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Abstract

Alzheimer’s disease is a neurodegenerative disorder that causes 60 – 70% of dementia and

affects 5.3 million Americans. Symptoms begin mild but progressively worsen, leading many

to go undiagnosed until late stages. Alzheimer’s has no cure, but early diagnosis leads to

better patient care and planning before full cognitive impairment. Current diagnostic proce-

dures involve a combination of medical records, cognitive tests, and hours of skilled doctors’

time. An automated method of diagnosing Alzheimer’s would be cheaper and faster than

current diagnostic methods. Recently, machine learning algorithms have been developed to

diagnose Alzheimer’s from fMRI data. However, these algorithms have only achieved high

accuracies for binary classification, rather than classifying the stages of cognitive impair-

ment. This paper presents a machine learning model that classifies five stages of cognitive

impairment. The proposed algorithm achieves a state-of-the-art subject-level classification

accuracy of 85.1%. Additionally, by analyzing the brain regions of interest to the model, the

model indicates the hippocampus region, areas of white matter, and straight sinus are most

important for diagnosing Alzheimer’s.



1 Introduction

1.1 Alzheimer’s Disease

Alzheimer’s disease (AD) is an incurable neurodegenerative brain disorder that progressively

destroys neurons and synapses in the brain. Alzheimer’s affects 5.5 million Americans, and

causes memory loss, impaired reasoning, speaking, reading, and writing, as well as decreased

spatial abilities. Alzheimer’s is the cause for 60% - 70% of dementia. No treatment has been

shown to slow the progression of the disease [1].

Mild Cognitive Impairment (MCI) is a condition of noticeable cognitive decline that

is not severe enough to impact everyday activities [1]. Approximately 15-20% of people

over 65 have MCI [2], and 32% of people with MCI develop Alzheimer’s within five years

[1]. Diagnosing individuals with MCI before they develop Alzheimer’s is fundamental for

the effectiveness of potential treatments, since patients at the MCI stage do not have the

extensive brain damage of Alzheimer’s patients [3].

There is no single diagnostic test for Alzheimer’s. Instead, doctors obtain family, med-

ical, and psychiatric history, consult family members, conduct cognitive tests, and perform

neurological exams. Patients also undergo blood tests and brain imaging to rule out other

causes of dementia. The process of data collection and physician interpretation can take

several weeks [1].

An estimated 50% of individuals with forms of dementia go undiagnosed. In addition,

the average diagnosis occurs 2-3 years after symptoms become apparent. When patients are

diagnosed, expert diagnostic accuracy is only 77%. However, recent combinations of blood-

based biomarkers, questionnaires, medical history, cognitive screening, and neurological tests

have achieved 90.2-92% accuracy, but cost of thousands of dollars to conduct [4].

Biomarkers of Alzheimer’s include neurofibrillary tangles and beta-amyloid plaque buildup

[5]. Brains inflicted with advanced Alzheimer’s show inflammation, shrinkage from cell death

caused by plaque buildup, and debris [1]. Amyloid plaque buildup can begin up to twenty

years before symptoms become apparent [6].

1.2 fMRI Data

Resting state functional magnetic resonance imaging (rs-fMRI) is a relatively new biomarker

for Alzheimer’s detection. rs-fMRI is non-invasive and does not require patients to perform a

task, making data collection easily attainable during routine MRI sessions [5]. Each subject

generates four-dimensional data: a 3D MRI scan per time step as the patient moves through
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the MRI scanner.

The Alzheimer’s Disease Neuroimaging Initiative is the largest collection of fMRI data

of individuals with Alzheimer’s and cognitive impairment. ADNI 1, the first study, col-

lected data from 200 Alzheimer’s patients, 200 normal subjects, and 400 subjects with mild

cognitive impairment (MCI) [7].

ADNI 2 expands upon ADNI 1 and stratifies patients into five categories, rather than just

three. In addition to the Alzheimer’s (AD) patients, and normal subjects with no cognitive

impairment, ADNI 2 contains EMCI, LMCI, and SMC patients.

LMCI, or “Late Mild Cognitive Impairment”, represents subjects with reported signif-

icant cognitive impairment, but did not meet the criteria for Alzheimer’s. Patients in the

EMCI category, or “Early Mild Cognitive Development”, also reported cognitive impair-

ment. Levels of MCI (early or late) were determined using the Wechsler Memory Scale

Logical Memory II; EMCI patients scored lower than a predetermined threshold. For both

EMCI and LMCI patients, cognitive impairment did not affect daily activities.

SMC, or “Significant Memory Concern”, represents the category of patients who scored

within the normal range on cognition tests, and had a Clinical Dementia Rating of 0, but

self-reported memory concern and inconsistent forgetfulness. These patients would otherwise

be in the “Normal” category. Although no current diagnostic test can distinguish SMC

patients from Normal patients, SMC patients are correlated with a higher likelihood of

future cognitive decline [7]. Rs-fMRI data and the ADNI databases are widely used for

training and testing deep learning models to classify Alzheimer’s.

1.3 Deep Learning

Deep learning models are composed of multiple layers of non-linear modules to learn complex

features necessary for classification [8]. Convolutional neural networks in particular have

been widely adopted for computer vision tasks, including classifying image data, object

detection, and segmentation [8]. Convolutional networks consist of convolutional layers,

which have a set of feature maps and filters to exploit local groups of values, and pooling

layers, which serve to merge similar features [8]. Convolutional networks have grown in

popularity since the advent of the ImageNet challenge, in which algorithms are trained on

1.2 million images and tested on 150,000 images comprising 1000 categories [9]. In particular,

AlexNet, a convolutional network with 60 million parameters and 650,000 neurons, achieved a

winning top-5 error rate of 15.3% in ImageNet 2012 compared to the second-place 26.2% error

rate [10]. Recent advancements in convolutional network architecture, including residual
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connections [11] and Inception blocks, have been combined in the recent Inception-ResNet-v2

model, which achieved state-of-the-art 4.9% top-5 error on the ImageNet validation dataset

[12].

2 Related Work

Within the past few years, numerous deep learning models have been created for Alzheimer’s

diagnosis from fMRI data. However, the vast majority focus solely on binary classification.

The highest classification accuracies have been reported for binary Alzheimer’s vs. Nor-

mal classification. Sarraf et al. [13] achieved near-perfect results using a 2D convolutional

network for binary Alzheimer’s vs. Normal classification.

However, binary classification lacks applicability to clinical settings. Since networks

trained for Alzheimer’s vs. Normal classification are not trained or tested on mild cognitive

impairment (MCI) subjects, models cannot provide these patients any diagnosis at all. For

real-world applicability, machine learning models must be trained on a range of classes

encompassing the cognitive impairment spectrum, and achieve high multiclass accuracy.

The Cascaded Multi-view Canonical Correlation (CaMCCo) model is a recent multiclass

machine learning model. CaMCCo achieved 89.1% accuracy for Normal subjects, 80.0%

accuracy on MCI subjects, and 85.0% accuracy on Alzheimer’s (AD) subjects. However,

CaMCCo used physiological, proteomic, genomic and image data from the ADNI 1 dataset

[14]. Deep learning models, specifically, combinations of autoencoders for feature selection

and convolutional networks, have thus far resulted in the best multiclass accuracy on the

ADNI 1 dataset [15]. Table 1 below shows the results for three recent studies on the ADNI

1 dataset.

Table 1: Previous multiclass Model Results

Study Method Comparison Accuracy

Gupta et al. [16] Sparse Autoencoder & CNN Normal v. AD v. MCI 85.0

Payan & Montana [17] Sparse Autoencoder & CNN Normal v. AD v. MCI 89.5

Hosseini-Asl et al. [18] Autoencoder & CNN Normal v. AD v. MCI 89.1

Machine learning models are much less accurate at distinguishing between classes on the

ADNI 2 dataset. This can be attributed to the fact that ADNI 2 contains five classes (AD,
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LMCI, EMCI, SMC, Normal), so the neurological differences between each class is smaller,

increasing classification difficulty.

Prasad et al. [19] inputted manually-engineered features from brain connectivity matrices

into a SVM with ten-fold cross validation, and achieved 78.2% accuracy for AD vs. Normal,

59.2% for EMCI vs. Normal, and 63.4% for EMCI vs. LMCI. Korolev et al. [20] used a

3D-CNN without feature generation to perform binary classification on the ADNI 2 dataset.

Korolev et al. achieved 80% accuracy for AD vs. Normal, but accuracy dropped to 64%

for AD vs. EMCI, 62% for AD vs. LMCI, 63% for for LMCI vs. Normal, 56% for LMCI

vs. EMCI, and 56% for EMCI vs. Normal [20]. These results demonstrate the difficulty of

training machine learning models to learn even binary classification of ADNI 2 data, much

less multiclass classification.

Distinguishing between EMCI and LMCI classes is vital because EMCI subjects show

normal brain metabolism, as opposed to significantly lower brain metabolism in LMCI sub-

jects. EMCI patients also exhibit lower amyloid-plaque buildup than LMCI patients [3].

Wu et al. [3] indicates that the maximal benefit of disease-modifying therapy occurs before

amyloid-plaque fully builds up. Thus, anti-amyloid therapy should be applied at the EMCI

stage rather than LMCI stage [3].

Additionally, no existing research has developed an algorithm or cognitive test to classify

SMC patients. Because SMC patients are correlated with a higher likelihood of cognitive

decline [7], an accurate SMC classifier would give patients knowledge earlier than ever they

possess a higher Alzheimer’s risk.

Thus, despite numerous deep learning models for classifying Alzheimer’s disease, no al-

gorithm performs accurate multiclass classification on AD, EMCI, LMCI, SMC and Normal

patients. In this paper, I introduce a robust, rs-fMRI based, five-way machine learning clas-

sifier, which is needed to diagnose patients across the cognitive spectrum accurately, quickly,

and cost-effectively.

3 Methods

3.1 fMRI Data Filtering

Data used in preparation of this paper was obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database. The standard format for each subject was a series

of 140 64×64×48 3D NIFTI files and a single T-1 Weighted Structural MRI file. Each 3D

NIFTI file represented the rs-fMRI data of the patient’s brain from a 3 Tesla MRI scanner.
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The 140 files represented the brain at 140 time steps as the patient moved through the scan-

ner. Certain subjects had 144 or 240 time steps; these data points were filtered out and are

shown in the “Time Discrepancy” column in Table 2. Multiple subjects had non-standard

fMRI size (e.g. 96×96×48, 80×80×48), and were filtered out as well. Table 2 below shows

the distribution of subjects across the classes.

Table 2: ADNI Subjects

AD LMCI EMCI SMC Normal Total

Initial 96 114 125 36 86 457

Time Discrepancy 10 13 3 0 14 40

Size Discrepancy 1 1 6 2 4 14

Final 85 100 116 34 68 403

3.2 fMRI Data Preprocessing

First, subjects were randomly split into training and testing categories. Approximately 75%

of the data was used for training, and the remaining 25% for testing. Table 3 shows the

subject split below.

Table 3: Training and Testing Subject Split

AD LMCI EMCI SMC Normal Total

Training 64 75 86 25 52 302

Testing 21 25 30 9 16 101

Since each subject contained 140 time steps, the number of 3D MRI images is 140 times

the number of subjects. Table 4 shows the number of 3D images for each diagnostic category.

Table 4: Training and Testing 3D Image Split

AD LMCI EMCI SMC Normal Total

Training 8960 10500 12040 3500 7280 42280

Testing 2940 3500 4200 1260 2240 14140
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Identical preprocessing was applied to the training and testing datasets. Data was pre-

processed according to procedures in Sarraf et al. [13]. First, the skull and neck voxels, which

are the non-brain regions of the MRI scans, were removed from the T-1 weighted image that

corresponded to each subject. This used the program FSL-BET [21]. The Resting-state

fMRI contained 140 time steps per subject and was corrected for motion artifacts using

FSL-MCFLIRT [21]. Then, regular slice timing correction was applied to each time-series

because later steps assume all slices were acquired halfway through the relevant acquisition

time. Slice timing correction uses a Hanning-windowed Sinc interpolation, which shifts each

time series by the appropriate fraction. Spatial smoothing was carried out next using a

Gaussian kernel of 5 mm full width at half maximum. Then, low-level noise was removed

from the data, and per Sarraf et al. [13], a cutoff of 0.01 HZ, or sigma of 90 seconds, was

used. Then, the T-1 weighted structural image was registered with the Resting-state fMRI

using an affine linear transformation with 7 Degrees of Freedom. Finally, the registered

images were aligned to the MNI152 standard space using affine linear registration with 12

Degrees of Freedom.

After preprocessing, the data was split into 2D PNGs using the FSL-SLICE [21] program.

Since each 3D MRI had depth 48, 48 64×64 RGBA PNGs were generated. Table 5 shows

the number of 2D images per diagnostic category.

Table 5: Training and Testing 2D Image Split

AD LMCI EMCI SMC Normal Total

Training 430080 504000 577920 168000 349440 2029440

Testing 141120 168000 201600 60480 107520 678720

3.3 Inception-ResNet-v2 Model

An Inception-ResNet-v2 [12] model was implemented in the Keras machine learning library

[22] with a Tensorflow [23] backend. The model was initialized with trained ImageNet weights

to take advantage of transfer learning [24]. No network layers were frozen. The last layer, a

softmax classifier for the 1000 ImageNet classes, was replaced with a softmax with 5 outputs

for the five ADNI classes.

Training and testing of models were completed on a server with 2 16-core Intel Xeon E5-

2630 CPUs and 4 NVIDIA Tesla K80 GPUs, each with 12 GB of VRAM. Keras performed
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computation on only a single GPU, but split the batch size across each GPU’s VRAM. The

batch size was set to 40 images, and a stochiastic gradient descent (SGD) optimizer was

initialized with learning rate = 0.01, decay = 10−6, and momentum = 0.9. The model

trained for five epochs, at approximately 2900 minutes per epoch.

Two Inception-ResNet-v2 models were trained and tested. The first model used class

weights, which values data points inversely proportional to their class size during network

training. When learning from imbalanced datasets, networks might otherwise ignore features

of smaller classes, minimizing training loss solely through classifying data from larger classes.

The second Inception-ResNet-v2 model did not use class weights. The two models were

combined to create an ensemble model. For each input, the ensemble model compared the

output of both the class-weighted and standard Inception-Resnet-v2 models. If the outputs

differed, the ensemble model gave priority to the model with the higher training accuracy in

the class of its output.

3.4 Voting Algorithm

Although the Inception-ResNet-v2 model classifies 2D slices, in practice, a machine learning

model for diagnosing patients with Alzheimer’s must be able to combine outputs to classify

3D fMRI scans and 4D subject data. The classification accuracy of 3D fMRI scans and 4D

subject data is more important in a clinical setting than raw model performance.

In order to classify the 3D fMRI scans from their 48 2D slices, a voting algorithm was

created. This algorithm is based on the assumption that a 3D scan with more 2D slices

classified to a certain category is more likely to be that category. For instance, a 3D fMRI

scan with most of its 48 2D slices classified as “Alzheimer’s” is more likely to be from an

Alzheimer’s patient.

First, network predictions for each of the 2D slices were recorded and the 3D file was

assigned the category with the plurality of predictions. This prediction was then compared

with the ground truth of the 3D file to calculate classification metrics.

Subject-level classification was calculated using a similar voting algorithm. The plurality

was calculated from the 6720 2D images (140 time steps × 48 slices) that comprised each

subject.

A similar voting algorithm was used in Sarraf et al. to calculate 3D and subject-level

classification accuracy from 2D slices. However, since Sarraf et al. performed binary classi-

fication, a majority voting rather than plurality voting algorithm was used [13].
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4 Results

Table 6: 2D Classification Confusion Matrix

Selected

Target AD LMCI EMCI SMC Normal

AD 100159 11264 21661 4484 3552

LMCI 5727 127872 22199 5451 6751

EMCI 16601 26040 140169 11040 7750

SMC 3221 15058 17865 20333 4003

Normal 7612 17901 20595 5101 56311

Table 7: 2D Classification Summary

AD LMCI EMCI SMC Normal Total

True Positives 100159 127872 140169 20333 56311 444844

True Negatives 40961 40128 61431 40147 51209 233876

False Positives 33161 70263 82320 26076 22056 233876

Accuracy 0.710 0.761 0.695 0.336 0.524 0.655

Table 8: 2D Classification Statistics

AD LMCI EMCI SMC Normal Average

Precision 0.751 0.645 0.630 0.438 0.719 0.637

Recall 0.710 0.761 0.695 0.336 0.524 0.605

F-score 0.730 0.698 0.661 0.380 0.606 0.615

Tables 6, 7, and 8 show network performance and statistics on the 2D testing data.

Tables 9, 10, and 11 show the results and statistics of the 3D voting algorithm outlined in

Section 3.3. Tables 12, 13, and 14 show the results and statistics of the subject-level voting

algorithm, also outlined in section 3.3. The shaded boxes in the confusion matrices (Tables

6, 9, and 12) highlight the correctly classified data. The bolded values in Tables 7, 10, and 13
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Table 9: 3D Classification Confusion Matrix

Selected

Target AD LMCI EMCI SMC Normal

AD 2753 121 66 0 0

LMCI 0 3214 282 0 4

EMCI 170 65 3960 0 5

SMC 0 196 608 456 0

Normal 5 210 345 0 1680

Table 10: 3D Classification Summary

AD LMCI EMCI SMC Normal Total

True Positives 2753 3214 3960 456 1680 12063

False Negatives 187 286 240 804 560 2077

False Positives 175 592 1301 0 9 2077

Accuracy 0.936 0.918 0.943 0.362 0.750 0.853

Table 11: 3D Classification Statistics

AD LMCI EMCI SMC Normal Average

Precision 0.940 0.844 0.753 1.000 0.995 0.906

Recall 0.936 0.918 0.943 0.362 0.750 0.782

F-score 0.938 0.880 0.837 0.531 0.855 0.808
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Table 12: Subject-level Classification Confusion Matrix

Selected

Target AD LMCI EMCI SMC Normal

AD 20 0 1 0 0

LMCI 0 23 2 0 0

EMCI 1 1 28 0 0

SMC 0 2 4 3 0

Normal 0 2 2 0 12

Table 13: Subject-level Classification Summary

AD LMCI EMCI SMC Normal Total

True Positives 20 23 28 3 12 86

False Negatives 1 2 2 6 4 15

False Positives 1 5 9 0 0 15

Accuracy 0.952 0.920 0.933 0.333 0.750 0.851

Table 14: Subject-level Classification Statistics

AD LMCI EMCI SMC Normal Average

Precision 0.952 0.821 0.757 1.000 1.000 0.906

Recall 0.952 0.920 0.933 0.333 0.750 0.778

F-score 0.952 0.868 0.836 0.500 0.857 0.803
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highlight the overall accuracy of each respective algorithm. All results are from the ensemble

Inception-ResNet-v2 model.

5 Discussion

5.1 Model Performance

5.1.1 3D and Subject-level Classification

The ensemble Inception-ResNet-v2 model reaches a state-of-the-art 85.3% accuracy on five-

way 3D fMRI classification and 85.1% accuracy on five-way subject-level classification. The

model displays greater than 90% accuracy in classifying AD, LMCI, and EMCI 3D-fMRI

scans and subjects. This is far greater than both Korovel et al. [20] and Prasad et al.

[19], even through both studies only performed binary classification. Since both Korovel

et al. and Prasad et al. were testing on the ADNI 2 dataset, the comparison highlights

the huge leap forward of the proposed Inception-ResNet-v2 model. The model even slighly

outperforms Gupta et al. [16], even though Gupta et al. was only performing 3-way (AD

vs. MCI vs. Normal) classification.

For subject-level classification, AD (0.952), LMCI (0.920), and EMCI (0.933) meet or

exceed even the newest manual diagnostic techniques shown in Sabbagh et al. [4], which

reached only 90.2 - 92% accuracy through a costly combination of brain imaging, neurological

exams, and questionnaires.

However, the model only achieves 75.0% accuracy of Normal subjects and 33.3% accuracy

of SMC subjects. This may be attributed to a lack of data. Normal subjects (n=16) were

more limited than EMCI (n=30), LMCI (n=25), and AD (n=21). This resulted in less

variation between brain scans and may have caused the network to overfit on training data.

Data augmentation could be used to alleviate the Normal data shortage. The SMC accuracy

was affected by low data to a greater extent (n=9), as shown by the extremely low accuracy.

Even with data augmentation, the SMC accuracy may not improve to the level of AD, EMCI,

and LMCI until more SMC data is available in the ADNI-2 database.

Although the model may not be able to diagnose SMC patients, four-way classification

of AD vs. EMCI vs. LMCI vs. Normal is still novel, and removing the SMC patients results

in 90.2% overall accuracy. Thus, the Inception-ResNet-v2 model achieves the accuracy of

the latest manual techniques [4], but costs pennies to run and takes a few minutes rather

than weeks to diagnose patients.
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5.1.2 2D Classification

Low 2D classification accuracy (0.655) may be attributed to inherent flaws in the 2D nature of

the input data. When 3D fMRIs are sliced on the z-axis, slices near the top and bottom of the

brains contain smaller cross-sections of brain matter. Some images contain no information at

all (see Figure 2 below), causing a reduction in accuracy as the model overfits and attempts

to find patterns in blank images. Figure 1 shows the model’s accuracy for entire testing set,

separated by z-coordinate. Accuracy ranged from 81.0% for slice 30 to 30.6% for the slice

47. Figure 1 supports this explanation for low 2D accuracy, since the first fifteen slices and

last ten slices of each 3D MRI scan contribute far more error than the middle twenty-three.

Figure 1: 2D Slice z-coordinate vs. Accuracy

Nevertheless, in a clinical setting, this algorithm would only be used to classify entire

subject data, not single images. Thus, the 3D and subject-level classification metrics are far

(a) Slice 0 (b) Slice 4 (c) Slice 22 (d) Slice 30 (e) Slice 44

Figure 2: 2D Slices from an Alzheimer’s brain
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more important when judging real-world practicality.

5.2 Model Analysis

It is reasonable to ask which features of the brain the model is using to classify the 2D slices.

Understanding which parts of an image are most important for network accuracy tells us

which parts of the brain are most important for classification, and thus, which parts of the

brain differ in Alzheimer’s subjects and subjects in other stages of cognitive impairment.

Partial occlusion is a technique in which parts of an image are blocked out by an overlaid

shape, e.g. a black square. The image with the blocked area is fed into the network, and

the classification accuracy is recorded. The recorded information is not which category the

model predicts, but rather the outputs of the last softmax, which gives the probability the

model predicts the image belongs to each class [25].

This process is repeated with the blocked-off area shifting for each run. The maximum

probability (i.e. network confidence) declines the most when the “most important” regions

of the image are blocked off [25].

Partial occlusion was visualized using the Picasso CNN Visualizer [26]. Figure 3 shows an

example of partial occlusion. The leftmost image in Figure 3 is the original image, the second

image shows the occlusion grid (strides = 20) and the window (size = 0.2). The window

shown here is grey to stand out from the background, but the window color was black. The

center of the window moves across the occlusion grid, generating a network output for each

grid square. At each window location, the network confidence is visualized in that location

in the rightmost image, where yellow is the most confident (AD=1.0). The darker the colors

at a specific location, the less confident the model was with that location blocked. Thus,

for the image in Figure 3, the model is relying most heavily on the features in the purple

highlighted areas to classify the image, because network confidence decreases the most when

those areas are blocked.

Figure 4 shows the network probabilities for the other classes, just as the network prob-

ability for Alzheimer’s is shown in the rightmost image in Figure 3. As expected, when the

network outputs a lower probability for Alzheimer’s, it produces a higher probability that

the image belongs to a different class.

Different slices of the same class can result in very different partial occlusion heatmaps.

Figures 5 and 6 illustrate this point.

I seek to understand which regions of the brain the model uses to distinguish the Alzheimer’s

from other classes. The model has learned that changes in these regions of the brain cor-
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Figure 3: Partial Occlusion: Alzheimer’s

Figure 4: Partial Occlusion: Non-AD Probabilities

Figure 5: Partial Occlusion: Alzheimer’s 2

relate best to Alzheimer’s. Thus, these regions, when blocked, reduce model confidence the

furthest, and appear darkest on the partial occlusion heatmap.

However, the model appears to be losing confidence when different regions of the brain
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Figure 6: Partial Occlusion: Alzheimer’s 3

(a) Average fMRI Slice (b) Average Alzheimer’s Occlusion Heatmap

Figure 7: Average Alzheimer’s Data

are blocked in Figures 3, 5, and 6. Rather than analyze a single image’s partial occlusion

heatmap, I seek to get a representative view of the model.

To get a representative view of which regions the model uses to classify Alzheimer’s,

1000 correctly-classified AD images were randomly sampled from the testing set, and partial

occlusion heatmaps were created using strides = 20 and a window = 0.2. These heatmaps

were then averaged. The result is shown in Figure 7b. In addition, these 1000 Alzheimer’s

slices were averaged to create an average fMRI slice, shown in Figure 7a.

I note three cells of the occlusion grid are considerably darker than others, and thus when

any of these three regions are blocked, model classification performance suffers. Thus, the

model has learned that changes in these three regions are most associated with Alzheimer’s.

Each of these cells is surrounded by less dark cells, however, this is expected since the window

size is larger than each grid cell, so when the window covers the dark cells, it also covers

some of the cells around them.

By overlaying these images, I can then map the dark regions to regions of the brain.
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The highest dark cell appears to be located between the hippocampi, which aligns with

current knowledge that Alzheimer’s is associated with hippocampal atrophy [27].

The lower center purple cell appears to be directly over the straight sinus area. However,

this is not supported by current research, which indicates that Alzheimer’s patients have

decreased blood flow in the superior saggital sinus, the transverse sinus, internal carotid

arteries, and middle cerebral artery [28]. However, since the model has learned that the

straight sinus region is important for diagnosis, further research should be conducted to

investigate the effects of Alzheimer’s on straight sinus area.

The lowest right purple cell just appears to be over a particular area of white matter.

Abnormal white matter in patients is known to be associated Alzheimer’s, and it has been

previously hypothesized that this abnormality may be significant enough for white matter

to play an important role in the diagnosis of Alzheimer’s disease [29]. The model appears to

confirm this, albeit in only a small area of white matter near the back right of the brain.

6 Future Work

The model visualization presented above provides a few limitations which reduce the in-

ferences that can be drawn. First, partial occlusion heatmaps for each slice, regardless of

z-coordinate, were averaged. However, the brain is a three-dimensional object, and structures

can be vertically above one another. In the 2D visualizations above, two vertical aligned

structures that both decrease network confidence would appear as a single square or clump.

For future work, partial occlusion heatmaps should be generated for tens of thousands of

slices, and then the heatmaps should be grouped by slice z-coordinate, and then averaged.

This would result in forty-eight different heatmaps, each corresponding to a slice of a 3D

brain. Then, the heatmaps should be concatenated to form a 3D heatmap, where each pixel

would become a voxel and the voxels can then be mapped in three dimensions to the brain.

Finally, the sections of the brain with the highest heatmap values should be analyzed for

corroboration with current scientific understanding.

Partial occlusion was only conducted in a 2D manner with 1000 images, as outlined in

Section 5.2, because of computational resource limitations. The server used for training and

testing was only accessible through a terminal, but Picasso requires browser access [26], so

far less powerful CPUs were used to perform partial occlusion. The intensive visualization

outlined above should entail modifying Picasso source code to perform partial occlusion

without browser access or increased funding for direct GPU access.
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7 Conclusion

In this paper, I present an ensemble convolutional network model to classify patients into

Alzheimer’s, Early Mild Cognitive Impairment, Late Mild Cognitive Impairment, Significant

Memory Concern, and Normal categories. The proposed Inception-ResNet-v2 model is the

first to perform five-way classification, and reaches 85.1% subject-level classification accuracy.

This outperforms previous binary classification algorithms by up to 30%. The proposed

model’s accuracy rivals the latest manual diagnostic procedures, but is orders of magnitude

cheaper and quicker. Additionally, by analyzing the model through partial occlusion, I

provide insight into the regions of the brain the model uses to classify images. The model

appears to use changes in the hippocampus and areas of white matter to diagnose patients,

both of which are corroborated by previous research into the effects of Alzheimer’s on the

brain. Additionally, the model uses the straight sinus area, suggesting that further research

should be conducted on the effects of Alzheimer’s on the straight sinus.
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