
Dynamic Optimality and Tango Trees

Yash Maniyar, Nikhil Sardana, Vinjai Vale

June 2019

1 Alice in Theoryland

Imagine you’re the average, everyday balanced binary search tree. You’re walking along,
minding your leaves, when all of a sudden, a wild, unshaven computer scientist jumps out
in front of you and starts peppering you with queries.

“Quick, find x1,” the computer scientist shouts. You sigh, descend down your nodes, and
retrieve the element for him from one of your leaves.

“Great. Now, find x1 again,” the computer scientist demands. “Really, dude? You just
asked me for that,” you protest, but there’s no convincing him. You once more perform
logarithmic work, and give the computer scientist back x1.

Over and over, the computer scientist asks for x1. Over and over, you perform logarithmic
work. Finally, after n queries, you gasp, exhausted: “You know, if you just told me ahead
of time you were only looking for x1, I would have just maintained a pointer to it. I could
have done a factor of log(n) less work.”

The computer scientist relents, admitting: “You’re right. That wasn’t very fair. How
about I ask you a different set of queries?”

“Thanks,” you reply. You’re a pretty good binary search tree. You’re balanced. You’ve
only got O(log(n)) layers. For worst-case sequences of queries, you’re provably optimal.
What could a computer scientist possibly throw at you?

“Find me x1,” the computer scientist asks. You perform logarithmic work, and give it
to him. “Find me x2”, he queries again, and you once more do logarithmic work and give
it to him. The computer scientist proceeds to ask for x3, x4, x5, . . . , asking once for each of
your nodes, in order. At the end of the day, you’ve performed n log(n) work—you’re tired,
hungry, and bruised, and you remark: “You know, if you had just told me up front you were
searching for the keys in order, I would have just done an inorder traversal. It would have
saved me a factor of log(n) time.”

1

The computer scientist replies: “Ah, but if you were dynamically optimal, you wouldn’t
need to know my queries ahead of time. No matter the sequence of queries, a dynamically
optimal tree can match the best binary search tree.”

2 Dynamic Optimality

An online algorithm is one that receives and processes its input serially—like a computer
scientist bombarding an unsuspecting tree with queries—rather than all at once. Inherently,
an online algorithm is harder to optimize than an offline algorithm, where we can glean
information about operation patterns to organize our data.

Dynamic optimality refers to an online binary search tree that matches the best binary
search tree for any sequence of queries. The “best” binary search tree for any given access
sequence X (denoted OPT(X)) refers to the fastest any offline binary search tree can operate
on the sequence.

How do we find this “best” offline binary search tree? Given exponential time, OPT(X)
can be computed exactly for any access sequence—however, we’re unlikely to ever find a prac-
tical method for computing OPT(X) for large sequences, since it’s believed that computing
OPT(X) is NP-complete [1].

Nevertheless, our focus centers not around offline optimality but dynamic optimality—
does there exist a dynamically optimal binary search tree? The Tango Tree [2] is the first
real progress towards finding a dynamically optimal binary search tree since the Dynamic
Optimality Conjecture was posed in 1985. But before we get into Tango Trees and their
construction, we’ll need to introduce the notion of competitiveness and find a new way of
looking at binary search trees.

2.1 Competitiveness

An algorithm T has a competitive ratio a if for any sequence of operations π

COSTT (π) ≤ a · COSTOPT (π)

where OPT is a theoretically optimal algorithm for the sequence π. In other words, if T is
a-competitive, the cost of any set of operations for T is within a multiple of a of the optimal
algorithm.

It is important to emphasize that an algorithm is a-competitive if and only if it differs
from the theoretically optimal time by at most a factor of a for all sequences of operations.
For example, consider the numbers 1, 2, 3, . . . , n. Suppose these n values are the only ones
in the tree, and I wish to search for all n, in order. There exists an offline binary search
tree which can perform these n searches in amortized O(n) time (think about a BST which

2

rotates the queried element to the top of the tree; or alternatively, one that maintains the
sequential access property). Suppose, on the other hand, that I receive my searches one at
a time—in an online manner—I have no notion of what my next query will be. In this case,
with no knowledge of my future operations, I might build standard red-black tree, which will
be log(n) competitive—it can perform each search in log(n) time (and will therefore take
O(n log(n)) time to process the sequence 1, 2, 3, . . . , n, slower than optimal by a factor of
log(n)).

Sure, in the worst case, I can find a sequence of inputs that will take all BSTs log(n)
search time per element, but dynamic optimality considers more than just the worst case—
dynamic optimality is concerned with all cases, all sequences, all inputs, and our performance
relative to the theoretically optimal BST.

2.2 Binary Search Tree Properties

As we covered in lecture, there are four main properties that a BST can satisfy:

• Balance: All elements are equally important.

• Entropy: Minimize Shannon entropy by storing more frequently queried elements
higher.

• Dynamic finger: Access time scales by the log of the distance from last accessed key.

• Working set: Access time for xi time scales by the log of the number of keys accessed
since last time xi accessed.

However, there are also a few more properties worth keeping in mind.

• Sequential Access property: Accessing 1, 2, . . . , n in sequential order takes O(1) amor-
tized time per operation (trivially, an inorder traversal of a BST satisfies this).

• Unified property: Access time between xi and xj scales with the log of the distance
between xi and xj plus the number of keys accessed between xi and xj. Trivially, this
implies both working set and dynamic finger, because in general

log(Distance + Time) < log(Distance · Time) = log(Distance) + log(Time)

and log(Distance) = Dynamic Finger and log(Time) = Working Set.

The splay tree satisfies the first four properties above (along with, of course, sequential
access), but it remains a conjecture that the splay tree (and any BST for that matter)
satisfies the unified property, which is stronger than both working-set and dynamic finger.

Any binary search tree that satisfies the balanced property is O(log(n)) competitive, since
every operation takes at most O(log(n)) time, and amortizing these offline over a sequence

3

of operations reduces each operation to minimum O(1) time. The question becomes: does
there exist an O(1)-competitive binary search tree?

The Dynamic Optimality Conjecture, posed by Sleator and Tarjan in 1985 [3], theorizes
that a splay tree is O(1)-competitive. But, to this day, the conjecture remains unproven.
The first real progress towards the Dynamic Optimality Conjecture came in 2007 with Tango
trees and their O(log log n) competitive ratio.

3 Binary Search Tree Geometry

At this point, I’m sure you’re thinking: OK, there’s this notion of competitiveness, which is
defined as a ratio of the optimal binary search tree. But computing the optimal binary search
tree is hard, so how can we know how competitive a Tango Tree is (or any BST, for that
matter) if we don’t know how to calculate OPT(X)?

Well, it turns out we can find a lower bound on the number of operations an optimal
BST must take by completely rethinking how we look at binary search trees.

3.1 Geometric Interpretation

There is a very clever bijection between valid binary search trees and geometric point sets
called arborally satisfied sets.

We define an arborally satisfied set (ASS) to be a subset of the lattice points in the first
quadrant such that any rectangle spanned by two points in the set with positive area must
contain another point in the set (in its interior or boundary).

We can construct a point set for each BST execution as follows. Suppose we have a BST
storing the elements 1, 2, . . . , n, and we query the elements x1, x2, . . . , xk in that order. For
each query, we add a row to the point set starting from y = 1 and working upwards. We mark
a dot at each node that we visit in the query, whether we are simply traversing through or
performing a tree rotation. It turns out that this point set is precisely an arborally satisfied
set. For example, if n = 4 and our BST was as depicted in Figure 1, we could construct the
corresponding arborally satisfied set for the search queries 3, 1, 4, 2.

Theorem 3.1. There is a bijection from the point sets of BST executions to arborally satisfied
sets.

Proof. This proof is long, tedious, and technical, so we won’t reproduce it here. The outline
of the BST → ASS direction is to consider a rectangle, and then take a lowest common
ancestor and prove that if they do not lie inside the rectangle then various tree rotations

4

Figure 1: An example of an Arborally Satisfied Set. Red dots are the queried nodes and
blue dots are the nodes in the BST that we visit (traverse/rotate) while executing.

must have happened, leading to other points being forced to lie in our rectangle. The proof of
the other direction involves an algorithm to construct a treap that satisfies a given ASS.

In addition, Demaine et al. have shown that an online algorithm to construct an arborally
satisfied set given an access sequence can be mapped to the execution of an online BST, with
an O(1) slowdown. The proof is similar to that of the bijection above, using a treap-based
construction.

Now that we’ve established this bijection, we can bound the total number of operations
required by the optimal BST by the minimal number of points in an arborally satisfied set
that covers a set of queries.

3.2 Greedy Algorithm

To get an upper bound on the number of operations required by OPT, we need to be able to
construct an ASS from a series of accesses. We use the following Greedy algorithm to do so:

1. Start with a blank plot with time as the y-axis and space as the x-axis and an empty
point set P .

2. Iterate over each time step from least to greatest (starting at the time of the first access
and increasing until the time of the last access). For each y = t:

(a) If an access is made at time t, plot the point (xt, t) and add it to P . Else continue
to the next time step.

(b) If the point set so far P is not arborally satisfied, add as few points as possible
on the line y = t to make the set arborally satisfied by doing the following.

If some point (xt, t) on y = t exists such that it forms a rectangle R with some
other point (a, b) ∈ P where b < t and where no other point in P is inside R, then
simply add the point (a, t) to P .

5

The Greedy algorithm is an online one, because it works on inputs given one at a time
instead of getting all the inputs at once. As we learned in the previous section, the arborally
satisfied point set generated by the greedy algorithm is in fact a binary search tree. This
BST can, with each access, rearrange itself for future searches. This means that the greedy
algorithm is actually an online BST algorithm. Also, Greedy and provides an upper bound
on the optimal BST, as proven by Demaine [4].

3.3 Preliminary Lower Bounds

We will now further investigate the geometry of arborally satisfied sets. This will allow
us to bound the performance of the greedy algorithm, and also develop a lower bound on
the optimal number of points needed to build an arborally satisfied set for an input access
sequence.

Define two rectangles to be independent if they are formed by pairs of points in the input
set (red points, corresponding to the BST accesses), and no corner of either rectangle is
strictly inside the other. (See Figure 2.)

Figure 2: Examples of dependent and independent rectangles.

We now introduce the concept of signed rectangles: define -rectangles as rectangles
formed by two points at the upper right and lower left (i.e. slash-rectangles), and similarly
define -rectangles as rectangles formed by two points at the lower right and upper left (i.e.
backslash-rectangles).

We call a superset of the original access points -satisfied if all -rectangles have another
point inside them, and -satisfied if all -rectangles have another point inside them. An
arborally satisfied set is both -satisfied and -satisfied.

Lemma 3.1. The minimal number of points in a -satisfied superset, OPT , is bounded
below as

OPT ≥ k + (max # of independent -rectangles) .

(Recall that k is the number of red points, i.e. the number of accesses in the BST execution.)

6

Proof. This proof is fairly long and not critically important for a decent understanding of the
landscape, so we will not prove it here. Intuitively, the smallest possible arborally satisfied
point set (with OPT points) is a superset of the input (or access) point set (which has k
points). The number of independent -rectangles in this access point set will each require at
least one additional point to be added somewhere in them in order for the overall point set
to become arborally satisfied. For now, we are not counting the points that would need to
be added within -rectangles to reach the optimal ASS, so it is clear the size of the optimal
ASS must be at least as large as k + (max # of independent -rectangles).

Because all independent rectangles are either -rectangles or -rectangles, this Lemma
implies the following theorem:

Theorem 3.2. (Independent Rectangle Bound.)

OPT ≥ k +
1

2
(max # of independent rectangles) .

3.4 Signed Greedy Algorithm

We now introduce the -Greedy or Signed-Greedy algorithm:

1. Sweep the access point set in the same way that the Greedy algorithm does.

2. For each access at time ti, add points on line y = ti in the same manner as in Greedy,
but only to satisfy -rectangles.

For every added point, we introduce a new independent -rectangle. So the point set S
produced by -Greedy will have at least |S | independent -rectangles.

-Greedy is defined analogously. Let the union of the supersets produced by -Greedy
and -Greedy on an access sequence be called S . Unlike Greedy, OPT is not a valid BST
(for example, in satisfying a -rectangle, a -rectangle may have become unsatisfied, and
therefore the overall point set is not arborally satisfied). However, S does provide us with
a lower bound on OPT: additional points may have to be added to S to make it arborally
satisfied and, equivalently, correspond to valid binary search tree.

It turns out that looking at S provides good lower bound for OPT , by the following
theorem.

Theorem 3.3. Let S be the set of rectangles formed by -Greedy, and similarly define S .
Then

max(|S , S |) = Θ(biggest independent-rectangle lower bound).

7

Proof. Let OPT be the smallest union of a -satisfying superset and a -satisfying superset
of the original access points. Then by Lemma 3.1, we have

OPT ≥ k +
1

2
(max # of independent rectangles),

where k is the size of the input access sequence. In turn, we have

1

2
(max # of independent rectangles) ≥ 1

2
max(|S |, |S |).

But each of |S | and |S |, as explicit constructions, are greater than OPT and OPT ,
respectively. Since the maximum of two quantities is greater than their average, we can
continue the inequality chain with

1

2
max(|S |, |S |) ≥ 1

4
(OPT +OPT) ≥ 1

4
OPT .

Hence we’ve created a constant factor sandwich on either side of the inequality, so all
these expressions must be within a constant factor of each other. In particular, the maxi-
mum number of independent rectangles must be within a constant factor of max(|S |, |S |),
proving the theorem.

This proves that Signed Greedy gives us a lower bound for OPT . We now have both a
lower and upper bound for OPT, both based on variants of a greedy algorithm – perhaps we
can compare them.

3.5 Exploration of Greedy vs. Signed Greedy

The big question is whether Greedy (an upper bound on OPT) is within a constant factor of
OPT , generated from Signed Greedy (a lower bound on OPT). The two algorithms are very
similar; the only difference is that Greedy satisfies both -rectangles and -rectangles at the
same time, while we satisfy the and rectangles separately in two calls to Signed Greedy,
and then take the union of the sets to compute OPT . It is conjectured, but unproven, that
these two differ by just a constant factor.

Conjecture 3.1 (G = SG Conjecture). The sizes of the point sets generated by the Greedy
and Signed Greedy algorithms differ by a constant factor across all access sequences.

Erik Demaine, one of the fathers of dynamic optimality and the inventor of tango trees,
has proposed this formulation of the dynamic optimality problem, and has said that a solution
would be a breakthrough in the field.

To investigate, we implemented the Greedy and Signed Greedy algorithms for arbitrary
access sequences. Then, for each n = 1, . . . , 13, we generated a number of random access

8

sequence of length 2n and fed it to the Greedy, -Greedy, and -Greedy algorithms. OPT
was generated by taking the union of the point sets returned by the later two algorithms.
This process was repeated several times for each n. Then we plotted the average ratio
between the size of the point set generated by Greedy and OPT .

Figure 3: Length of access sequence (lg-scale) on the y-axis, versus the ratio
|Greedy| /OPT on the x-axis.

From Figure 3, we see that as the size of the access sequence grows, the ratio between
Greedy and OPT seems to remain constant. With this empirical evidence that Greedy and
Signed Greedy differ by only a constant factor for a wide variety of access sequences, we can
say with more confidence that Greedy is a tight bound on OPT.

This is important, because it supports the idea that Greedy is in fact a dynamically
optimal online BST, rather than just an upper bound for one. If true, this would be the
answer to the biggest open question in the field of Dynamic Optimality: does a dynamically
optimal structure exist? For now, we contribute compelling evidence that it probably does.

4 Interleave Bound

The interleave bound is another lower bound on the number of operations by an optimal
BST, like the independent rectangle bounds. While it is unknown whether greedily generated

9

arborally satisfied sets are O(1)-competitive, we can use the interleave bound to build a data
structure whose competitiveness we can quantify. Tango trees are an elegant translation of
the structure of the interleave bound into a viable, working data structure.

4.1 Intuition

The interleave bound IB(X) is a valid lower bound for the work done by the optimal BST
P given an access sequence X. Intuitively, this is because every time a node y’s label is
changed (an alternation that is counted by the interleave bound) during the access sequence,
y has to have been touched—the only way its label could be changed is, by definition, if the
key that is being accessed is a descendent of y. So, the interleave bound gives us a count
of some of the times a number of nodes has been touched during an access sequence. This
set of touches is a subset of the total number of touches (a node y can be touched during
an access xi, but its label is left unchanged if xi exists in the same subtree that y’s label
specifies). Because this total number of touches is, in fact, proportional to the total amount
of work the BST P does during an access sequence X, the size of our subset of the total
touches is a (loose) lower bound on the total amount of work.

4.2 Formal Discussion

We now present a formal discussion of the interleave bound. For a static binary tree P with
n nodes given an access sequence X, for each access xi, we note whether xi is in the left or
right subtree of each node. Within each node, we keep track of the number of alternations
between accesses to the left and right subtrees, called interleaves. The total number of
interleaves across all nodes in P is denoted IB(x).

It turns out that the total number of interleaves provides a lower bound for the work
done by any binary search tree on a particular access sequence.

Suppose we maintain a perfect binary search tree P on the keys {1, 2, . . . , n}. As we
carry out our sequence of queries X = (x1, x2, . . . , xn), the structure of P will remain fixed.
For a node y in P , we define the left region of y as the set of y along with all the nodes in
its left subtree. Then define the right region of y as the set of the nodes in its right subtree
(not including y), so that the subtree of P rooted at y is perfectly partitioned into y’s left
and right regions. Now for each node y, we label each access xi ∈ X with either an L or an
R for whether xi lies in the left or right region of y, respectively. (If xi does not lie in the
subtree of P rooted at y, we simply discard it.)

10

Figure 4: Example of three accesses. In each image, the purple node is the accessed node,
and purple edges are the edges touched by the access. The access on the left is an L-access,

the access in the middle is neither L or R, and the access on the right is an R-access.

In this list of L’s and R’s, we now count the number of alternations from L to R and
vice-versa; these are called interleaves through y. For example, the list LLLRRLRL has
four interleaves, while RRRRR has none.

Now suppose that we have a fixed but arbitrary search algorithm on our BST T . Let the
state of T after executing access xi be Ti. Define the transition point for y at time i to be
the node in Ti satisfying these two properties:

1. The path from z to the root of Ti contains a node from both the left region of y a node
from the right region of y, and

2. z is the minimum-depth node in Ti such that this holds.

We will eventually prove that interleaves are linked to touching transition points, and
by proving some initial results about transition points we can ultimately obtain the bound
we desire with interleaves. Essentially, the notion of transition points allows us to bridge
the gap between interleaves (swapping between the left and right regions of a node) and the
minimum number of points in the BST that we touch while accessing (which we bound by
the number of transition points that we touch). With this high-level road map in mind, let
us develop a better understanding of these transition points.

Lemma 4.1. The transition point not only always exists, but is always unique.

Proof. Note that the lowest common ancestor of two nodes in a BST must have a key value
in between those two nodes. Hence the lowest common ancestor of two nodes in Ti that
are in the left region of y must lie in between the keys of those two nodes, and thus will be
another node in the left region of y. So if we let ` be the the lowest common ancestor of
all the nodes in Ti that are in the left region of y, then ` will also be in the left region of y.
Hence ` is the unique node of minimum depth in Ti of all nodes in the left region of y; if it
weren’t unique, then there would be another node at the same depth, and we could take the
lowest common ancestor of ` with this node to contradict the minimality of `.

Similarly, define r to be the lowest common ancestor of all nodes in Ti in the right region

11

of y; then r is the unique node in the right region of y with minimum depth in Ti. Also, the
lowest common ancestor in Ti of all nodes in the left and right regions of y must lie in either
the left or right region, since they are consecutive in keyspace. Hence it must be either `
or r, which are each shallowest nodes in their respective regions. Suppose without loss of
generality that it is `, and thus ` is an ancestor of r. It follows that r is a transition point for
y in Ti. Indeed, the path from r to the root contains both a node in the right region of y (r)
and a node in the left region (`). Furthermore, r is the unique transition point because any
path in Ti from the root to r must pass through ` before any other node in the left region,
and then r before any other node in the right region. Hence r is the unique transition point
for y in Ti.

Now that we have established that the transition point is well-defined, we will show that
it is stable, i.e. it does not change until it is accessed:

Lemma 4.2. Let z be the transition point of a node y at time j, and suppose that the BST
access algorithm does not touch z for all i in the time interval [j, k]. Then z remains the
transition point for node y during the entire time interval [j, k].

Proof. Define ` and r as in the proof of the last lemma, and again without loss of generality
suppose that ` is an ancestor of r. Because the BST access algorithm doesn’t touch r, it
doesn’t touch any of the nodes in the right region of y. So r will indeed remain the lowest
common ancestor of those nodes.

The nodes in the left region aren’t so straightforward. The algorithm could still touch
nodes in the left region of y without touching r; even ` could change. Let `i denote the
new lowest common ancestor of all the nodes in the left region of y. We claim that even if
`i 6= `, `i is still an ancestor of r. To see why, note that nodes in the left region of y can’t
newly enter r’s subtree in Ti, because that entire subtree remains unchanged. So some node
`′i in the left region of y must remain outside the subtree of r in Ti. So the lowest common
ancestor of `′i and r must also be outside r, which means that it is in the left region of y and
that `i is its ancestor. Thus by transitivity `i is also r’s ancestor, and so we are done.

Our last building block is to prove that these transition points are different over all nodes
in P .

Lemma 4.3. At any time i, no node in Ti is the transition point for multiple nodes in P .

Proof. Consider two distinct nodes y1 and y2 in P , and define the corresponding `1, `2, r1,
and r2 correspondingly. The transition point for y1 is either `1 or r1, and the same for y2. If
y1 and y2 are not ancestrally related in P , then their left and right regions are disjoint from
each other, so `1 and r1 are distinct from `2 and r2. So in this case the transition points are
indeed distinct. On the other hand, suppose that one of y1, y2 is an ancestor of the other;

12

without loss of generality, say y1 is an ancestor of y2 (in P). Then if the transition point for
y1 is not in the same side of y1 in P as y2, it must be different from `2 and r2 and thus the
transition point for y2. The only remaining case is if the transition point for y1 is the lowest
common ancestor of all nodes of y2’s subtree in P . Hence it is either `2 or r2, which ever is
less deep. But the transition point for y2 is `2 or r2, whichever is more deep. It follows that
the transition points of y1 and y2 differ in all cases.

Finally, we are ready to tackle the main theorem.

Theorem 4.1 (Interleave Bound Theorem.). Suppose we have a BST P with n nodes,
which remain fixed during querying. We will show that the time it takes to perform a series
of accesses X = (x1, x2, . . . , xn) on P is at least OPT(X) ≥ IB(X)

2
−n. This number is called

the interleave bound.

Proof. We will lower bound the cost of the optimal offline BST by counting the number of
transition points it touches. By Lemma 4.3, rather than count access by access aggregating
over nodes, we can instead count node by node and aggregate over accesses. Let us count the
total number of times the transition point of a node y is touched. Define ` and r as usual,
so the transition point of y is either ` or r, whichever is deeper. Suppose we pick an ordered
subsequence xi1 , xi2 , . . . , xip of maximal length of accesses to nodes that alternate between
being in the left and right regions of y. Then p is the amount of interleaving through y.
Suppose without loss of generality that the odd accesses xi2j−1

are nodes in the left region of
y, and the even accesses are nodes in the right region of y. Any access to a node in the left
region of y must touch `, and any access to a node in the right region of y must touch r. So
for each j with 1 ≤ j ≤ bp/2c, in order for both accesses xi2j−1

and xi2j to avoid touching the
transition point for y, the transition point must change from r to ` in between. But the only
way this can happen is if we actually touch the transition point for y. So the BST access
algorithm must touch the transition point at least once during the time interval [i2j−1, i2j].
There are bp/2c such intervals, so the BST access algorithm must touch the transition point

for y at least bp/2c ≥ p/2−1 times. Summing over all y gives the interleave bound IB(X)
2
−n,

as desired.

5 Tango Trees

Despite all the complexity of independent rectangles and space-time representations of BSTs,
the structure of a tango tree is refreshingly simple. We define a preferred child of a node
x to be the left child if the left subtree of x has been accessed (touched) more recently, or
the right child if the right subtree of x has been touched more recently. As a base case, the
preferred child is “none” if no access has occurred in either subtree yet.

Preferred paths form chains throughout the tree, and we can group nodes into these
chains, and store each chain as a red-black tree itself, with pointers between them falling

13

Figure 5: A Tango tree. Red edges mark “preferred paths”.

from tree to tree (see Figure 6 below). Since each chain has a height of at most log(n), each
auxiliary red-black tree has a height of O(log log(n)).

Figure 6: The Red-black tree representation of preferred chains. Each chain is a red-black
tree, with pointers between red-black trees (purple arrows) representing non-preferred

edges.

To search for a node, we start at the top-most auxiliary red-black tree (the one containing

14

the root) and descend down. We make k jumps across auxiliary trees (non-preferred edges),
resulting in kO(log log n) operations for a search.

Since preferred edges represent the nodes touched most recently, after every search, we
need to update preferred edges. Changing a preferred child is akin to cutting one path and
joining two others. This is akin to a constant number of split and join operations on two
red-black trees (since each preferred path is a red-black tree). Since each red-black tree has
O(log(n)) nodes, and the split and join operations take log(Height) for a red-black tree,
changing a preferred child takes time O(log(log(n))).

Accounting for updating preferred edges, searching for an element using a Tango Tree
takes time (k + 1)O(log log n).

5.1 O(log log n)-Competitive

Nothing about the structure of the Tango tree indicates it’s anything special—so then what
makes the Tango tree O(log log n) competitive?

Note that a search on a Tango tree takes time (k+ 1)O(log log(n)). So, if a Tango tree is
log log(n) competitive, the optimal binary search tree must take at least O(k). It turns out,
this follows pretty naturally from the interleave lower bound.

On a search for a node in a tango tree, every time we take a non-preferred edge, we
hop from one red-black tree to another red-black tree. This means that whenever we hop
between red-black trees, we are changing which subtree of a node was accessed last. Thus, the
number of hops between red-black trees, k, is precisely the number of subtree changes. The
number of changes between subtrees is exactly the change in the interleave bound between
two accesses.

So, over an entire access sequence X, the number of preferred edges changed is the total
number of subtree changes, which is exactly the interleave bound and at most OPT(X).
Therefore, the total cost of the access sequence is at worst OPT(X)(O(log log n)) (plus some
constant factors). Thus, the tango tree is O(log log n)-competitive.

We disregard lower factors and small details regarding differences between the interleave
bound and the tango tree, but the general idea should be clear—the tango tree is a direct
translation of the interleave bound into a data structure. Changing between two preferred
chains is akin to increasing the interleave bound by one.

5.2 Exploration beyond Tango Trees

How tight is the bound for Tango trees? Could we make a Tango tree better than Θ(log log n)-
competitive?

15

The fundamental idea behind a tango tree is to start with a balanced binary search tree,
note the “preferred children”, and then turn each of the “preferred children paths” into a
red-black tree. This is where the log log n factor arises—a binary search across a red-black
tree which has at most O(log n) elements, since the length of a “preferred path” is at most
the height of the original tree.

The Multi-Splay Tree [5], replaced these “preferred path” red-black trees with splay trees
for better bounds on the auxiliary tree operations. In particular, the authors of the Multi-
Splay Tree proved that the search time was improved from O(log n log log n) to amortized
O(log n). Building off this idea, we propose a modification of the tango tree which replaces
these “preferred path” red-black trees with tango trees.

However, our multi-tango tree, or mango tree for short, has no better bounds than a
traditional tango tree.

Figure 7: The Mango Tree. Preferred chains in the mango tree, which are implemented as
auxiliary tango trees, are marked in yellow. The preferred chains of the auxiliary tango

trees (marked in red) are implemented as red-black trees, as before.

Consider one of the auxiliary tango trees of the mango tree. Since a tango tree is
O(log log n)-competitive, there exists a sequence for which a tango tree takes O(log log n)

16

times worse than a standard balanced BST (think about a search that maximizes the number
of hops between auxiliary trees). In worst case sequences, Bose et al. [6] claim, the tango
tree can actually take Θ(log n log log n) time.

However, since there are O(log n) nodes in each of the auxiliary tango trees of a mango
tree, these auxiliary tango trees can take worst-case time of O(log log n log log log n). Since
we can take a maximum of O(log n) jumps between auxiliary trees, a mango tree search that
maximizes the hops between auxiliary tango trees should take O(log n log log n log log log n)
time. Since a balanced BST has worst-case O(log n) search time, the mango tree should be
O(log log n log log log n)-competitive. Certainly, because the mango tree is bounded by the
tango tree’s competitiveness, the mango tree is no better than O(log log n)-competitive.

5.3 Tightness

So the mango tree can’t possibly beat the tango tree’s O(log log n)-competitiveness. A
natural question to ask is then: Does there exist any way to modify the tango tree to
improve it’s competitiveness?

Sadly, the answer is no. Because the chain from the root node is of length log(n+ 1), no
matter how we create the Binary Search Tree for these nodes, we must have Ω(log log(n))
access time. In addition, every time we access a node along this chain, we change at most
one preferred child from left to right. See Figure 8 for an example.

Figure 8: An example of the preferred chains of a Tango tree before (left image) and after
(right image) an access (center image, shown in purple). At most one preferred edge along

the chain from the root node is changed after an access to a node along the chain.

Every time an edge along this chain changes, the interleave bound increases by one.
This means that every time we do Ω(log log n) work to binary search across the chain, we
increase our lower bound for OPT(X) by at most one. So, as our tango tree operations grow
by a factor of Ω(log log n), our lower bound for the fastest binary search tree increases by
O(1). Thus, using the interleave bound, the Tango tree is at best Θ(log log n)-competitive.
Fundamentally, the Tango tree cannot be improved without better lower bound—a tighter
lower bound—and without one, we can’t beat O(log log n) competitiveness. The interleave
bound simply won’t cut it.

17

The question remains: Do there exist better bounds than the interleave bound? And
how “tight” is the interleave lower bound, exactly? In fact, the interleave bound isn’t tight
at all—there exists sequences for which the interleave bound can be as far as Ω(log log n)
smaller than the OPT(X). None of the bounds found so far are provably tight; finding and
proving a tight bound remains a critical open question for solving the dynamic optimality
conjecture.

6 Experimental Analysis

We know a Tango tree is O(log log n)-competitive—it’s no worse than log log n times the
best binary search tree. It’s also conjectured that the Splay tree is O(1)-competitive. If the
Splay tree truly is O(1)-competitive, experimental results should tell us that if we select a
set of O(n) searches on a Tango Tree and a Splay Tree with n nodes, as n → ∞, the lower
bound on the number of Tango tree operations should grow at most a factor of O(log log n)
compared to the Splay tree. We couldn’t find a set of data online comparing the two, so we
did exactly that.

Using standard implementations of the trees, we initialized the trees with nodes from
{1, . . . , n}. Then, we performed O(n) operations on each tree, and counted the number of
operations. We chose not to use runtime as our metric because of hardware effects—caching,
memory optimization, etc.—and instead simply added counters inside the find operations
of the trees to get a lower bound on the number of rotations, edge traversals, and pointer
changes. Since all algorithms have hidden constant factors not present in Big-O analysis, we
ran a baseline for each algorithm of n = 25, and then for n = {26, 27, . . . , 222}, we calculated
the ratio, r, of the number of operations to the number of operations of n = 25. Lastly, for
each n, we plotted rtango

rsplay
, so we could determine how fast one algorithm’s operation count

was growing relative to the other.

18

Figure 9: Length of access sequence (log-scale) vs. rtango
rsplay

.

The orange line is an O(log log(n)) curve fit to the set of data points. Since the plot is in
log space, this is simply a shifted O(log(n)) curve. This suggests that the Splay tree truly
is dynamically optimal, since it seems to perform a factor of O(log log n) better than the
Tango tree.

7 Future Work

There are plenty of unsolved problems in the field of dynamic optimality. It seems the field
is still a ways away from proving or disproving Sleator and Tarjan’s Dynamic Optimality
Conjecture, since we still have to wrestle with a few more basic conjectures regarding bounds:

• For all access sequences, does there exist a tree P such that OPT = Θ(Wilber 1)?

• Is OPT = Θ(Wilber 2)? (Wilber has a second bound which we do not present in this
write-up, but which is based on alterations left and right across a vertical line passing
through each point p [7].)

• Does there exist a tight lower bound? Can we define and prove one, or disprove the
existence of one entirely?

19

The Dynamic Optimality Conjecture, although by no means a life-saving or time-critical
problem, is still an important theoretical question nonetheless. If proven true, it begs the
question: What is so special about splaying that makes it provably optimal? How are these
sequences of rotations able to best every other BST algorithm? If the conjecture is disproven,
we’re stuck wondering if there exists O(1)-competitive BST at all, and if so, what type of
rotation and movement might allow us to reach dynamic optimality.

8 Conclusion

In this paper, we explored dynamic optimality and many prominent lower bounds on optimal
binary search trees. We presented a rigorous proof of the interleave lower bound before diving
into Tango trees and proving their O(log log n)-competitive ratio using the bound.

In addition, we introduced the mango tree, which by all accounts performs worse than
a traditional Tango tree, but is still an interesting thought experiment into the nature of
the Tango tree. The recursive tango, it turns out, is slow precisely because Tango Trees
themselves are slow in the worst-case. Perhaps, if Tango trees had a better worst-case
runtime (like the Multi-Splay tree), a recursive strategy would be more viable).

Furthermore, we presented two experiments that support important conjectures in the
field. First, experimental evidence that signed greedy is within a constant factor of greedy
indicates there exists a tight bound for OPT(X), since signed greedy is a lower bound,
and greedy is an upper bound. Although we first attempted to prove this theoretically, we
found it intractable given our time constraints. Still, this experiment is fairly strong support
towards the existence of a tight bound.

Second, we present experimental evidence that Splay Trees are indeed O(1)-competitive.
By counting the number of Splay Tree operations and comparing the ratios appropriately,
we were able to find that the Tango tree grows by a factor of O(log log n) relative to the
Splay Tree. However, given our limited computational resources, more trials should be run
before drawing any further conclusions.

Ultimately, none of the experimental evidence we provide brings us any closer to a rigorous
proof of the dynamic optimality conjecture or a tight bound. Even the interleave bound,
for which there exists a sequences such that the bound is too low by a factor of log log n, is
relatively tight for most sequences.

Dynamic Optimality is a relatively young and accessible field of theoretical computer
science. Binary Search Trees, despite their ubiquity, still have an air of mystery around
their true bounds. When we take a look at BSTs from an entirely different perspective—
like access sequence geometry—an entire world of combinatorial geometry and algorithmic
analysis collide to produce awe-inspiring results and beautiful proofs.

20

9 Acknowledgments

We would like to thank the CS166 teaching staff (Keith Schwarz, Anton de Leon, Ryan
Smith, and Michael Zhu) for this wonderful class and the opportunity to pursue this topic
for our final project. We are also thankful to Professor Erik Demaine and the MIT Open
Courseware. We learned most of what we know about dynamic optimality and tango trees
from Demaine’s course 6.851, Advanced Data Structures [4]. Many of the technical proofs
presented in this paper arose from our understanding of the material from a combination of
Professor Demaine’s lectures and the original papers.

References

[1] J. Iacono, “In pursuit of the dynamic optimality conjecture,” CoRR, vol. abs/1306.0207,
2013.

[2] E. D. Demaine, D. Harmon, J. Iacono, and M. P a traşcu, “Dynamic optimal-
ity—almost,” SIAM Journal on Computing, vol. 37, no. 1, pp. 240–251, 2007.

[3] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,” Journal of the ACM
(JACM), vol. 32, no. 3, pp. 652–686, 1985.

[4] E. Demaine, “Advanced data structures,” Spring 2012.

[5] C. C. Wang, J. Derryberry, and D. D. Sleator, “O (log log n)-competitive dynamic
binary search trees,” in Proceedings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm, pp. 374–383, Society for Industrial and Applied Mathematics,
2006.

[6] P. Bose, K. Doüıeb, V. Dujmović, and R. Fagerberg, “An o (log log n)-competitive
binary search tree with optimal worst-case access times,” in Scandinavian Workshop on
Algorithm Theory, pp. 38–49, Springer, 2010.

[7] R. Wilber, “Lower bounds for accessing binary search trees with rotations,” SIAM Jour-
nal on Computing, vol. 18, no. 1, pp. 56–67, 1989.

21

	Alice in Theoryland
	Dynamic Optimality
	Competitiveness
	Binary Search Tree Properties

	Binary Search Tree Geometry
	Geometric Interpretation
	Greedy Algorithm
	Preliminary Lower Bounds
	Signed Greedy Algorithm
	Exploration of Greedy vs. Signed Greedy

	Interleave Bound
	Intuition
	Formal Discussion

	Tango Trees
	O(loglogn)-Competitive
	Exploration beyond Tango Trees
	Tightness

	Experimental Analysis
	Future Work
	Conclusion
	Acknowledgments

