
Turing Machines and Mapping Reductions

Nikhil Sardana

December 2019

It’s been a few weeks since our last lecture, and I’m sure you don’t remember everything
we talked about. So, Section 1 is a review of last meeting’s material. Skip to Section 2 for
material we didn’t cover last meeting, with a few new diagrams. Skip to Section 3 for new
material that wasn’t on last meeting’s handout. The schedule and materials are online at

https://nikhilsardana.github.io/lectures

1 Recap

We began our first lecture by asking “What is computation, anyway?” Computation is a
vague notion—computers are everywhere, and we use them constantly, but they come in all
different shapes and sizes, and they solve different problems. We would like to know if there
are problems no computers can solve. And, we’d like to know which problems we can solve
efficiently. So, it’s important to find a general way of modeling computers, and simple way of
framing computational problems. We’d like to think about a single model, and ask ourselves
“Can this model solve problem x?”, and have our answer generalize to all our real-world
computers.

In our first lecture, we framed computational problems as a language membership prob-
lems: Given a set S and an input x, we want a model that can answer “Is x in S?” These
sets can be quite complicated, so we can imagine any yes/no problem anyone could possibly
ask a computer can be encoded as a question of language membership.

Recall the following definitions around languages:

• Alphabets are finite, nonempty sets of characters. For example, Σ = {a, b, c}.

• Strings are finite sequences of characters. For example, aa.

• Languages are sets of strings. For example, {a, aa, aaa, . . . }.

• ε denotes the empty string.

• A Language over the alphabet Σ is a set of strings made of characters from Σ.

• Σ∗ is the set of all strings made from characters in Σ (this includes ε).

1



1.1 Finite Automata

We then introduced finite automata as a simple model for answering language membership
queries. A language L has a corresponding automata D that recognizes L if D accepts a
string if and only if the string is in the language L.

q0 q1

q2

a

a

b b

a

b

start

Every automata consists of a set of states, and a set of transitions between the states.
We begin at the start state, and read a character of our input string s. We move to the
appropriate state defined by a transition. We repeat this process, moving from state to
state, consuming characters of s. If we run out of characters and end in an accepting state,
we say that the automata accepts s, or equivalently, s is in the language of the automata.
Otherwise, we say our automata rejects s, or s is not in the in the language of the automata.

We introduced two types of automata last lecture. Deterministic finite automata
have every transition defined, and every input string takes an explicit computation path.
Nondeterministic finite automata do not have every transition explicitly defined, and
an NFA computes language membership by taking every single possible path of computation
for a given input simultaneously, and accepting if even a single path accepts.

Exercise 1.1. What is the language of the above DFA? What alphabet is this language
over?

We proved that NFAs and DFAs are equivalently powerful—if there is an NFA that
recognizes a language L, we can build a DFA that also recognizes L, and vice-versa.

1.2 Regular vs. Non-regular

We also saw that some languages do not have a corresponding finite automata. Recall that
we looked at the language L = {0n1n | n ∈ N}, and we realized that if there existed a DFA
D for L, then D would need a different state for 01, 02, 03, . . . and every 0n for n ∈ N. Since
we can only have finitely many states in any DFA, there can’t exist one for L.

S

A

R

X number of 0s

Y number of 0s

X number of 1s

X number of 1s

2



Languages with corresponding finite automata are called regular languages, and the
languages that have no corresponding finite automata are called non-regular. We can think
about non-regular languages as having infinite equivalence classes, which is why they have
no recognizing DFA.

The class of non-regular languages is huge—much larger than the class of regular lan-
guages, and it includes some languages we’d really like to be able to answer questions about.
For example, HTML. I’d like to know if a file contains valid HTML or not, but HTML is
famously non-regular. These are problems, basic problems, that our real-world computers
can answer, but our finite automata model cannot. So, it’s clear that finite automata are not
the best model for our computers. To model non-regular problems, we need a more powerful
model of computation. And so, we introduced the Turing machine.

1.3 Turing Machines

A Turing machine consists of a tape, which is infinitely long in one direction (we start at the
left end) and a tape head. Initially, our input is written on the tape, followed by infinitely
many blank tape cells, denoted by �. Our input is a finite string, made up of characters
from the input alphabet Σ.

. . . 1 1 0 0 0 0 . . . Input/Output Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head
(moves in both directions)

Figure 1: A Turing Machine with input alphabet Σ = {0, 1} and head states {q0, . . . , qn}.

The head of the Turing machine has finitely many states (just like the states of the DFA).
Our head starts at the left-most tape cell. At each step of our computation, the tape

head reads the contents of a single cell, and changes state based on the cell’s contents. Then,
the head writes a character to the cell. Finally, the head moves either right or left.

. . . 1 1 0 0 0 0 . . .

q1

3



. . . 0 1 0 0 0 0 . . .

q2

Figure 2: One step of the Turing machine. Between the first and second diagrams, the head
read 1, changed state to q2, wrote 0, and then moved right.

If our head ever reaches an accepting state qa, then we immediately accept and our
computation terminates. (This is unlike a DFA, in which we must finish our input before
we accept.) Similarly, if we reach a rejecting state, then we immediately reject. If a Turing
machine accepts or rejects an input, we say it halts or terminates. However, it is possible we
never reach an accepting or rejecting state. Since we have to move right or left at every step,
and our head never has to move to an accepting state, it’s possible for a Turing machine to
compute forever. We say a Turing machine loops when it fails to terminate.

Note: the head can write any character in the tape alphabet Γ, which contains Σ but
can contain additional characters. This will allow us to write special symbols that we know
don’t occur naturally in the input, and let us know we’ve already seen a certain cell.

q0

qA

q1 q2

qR

q3 q4

qR

q5

qR

q6

q7 qAq8q9

q10

qR

�→ �, R

0→ 0, R

0→ 0, R

1→ 1, R

�→ �, L

1→ 1, L

0→ 0, L

not(0, 1)

not(0, 1)

�→ �, R

0→ x,R

1

1→ 1, R

0→ 0, R 1→ 1, R

0

�→ �, L

x→ x, L

0

1→ x, L

0
x

1→ 1, L

1→ 1, L

0→ 0, L

0→ 0, L

x→ x,R

x
1

1
x

0→ x,R

start

Figure 3: A transition function for a Turing machine that decides {0n1n | n ∈ N}.

4



We saw last time that Turing machines are more powerful than DFAs and NFAs, because
they can decide non-regular languages. Recall our example Turing machine with the tape
alphabet Γ = {0, 1, x} and the above transition function (shown in Figure 3) to decide
{0n1n | n ∈ N}.

The diagram above shows the entire computation of the Turing machine. It sort of looks
like a DFA, but with different transitions, because a Turing machine does more than just
read characters. The diagram shows how the tape head writes and moves depending on what
it reads and what state it’s currently in.

We start off with the tape head at q0 and read the very first character of the input. At
each step of the computation, we take a different transition depending on the character we
read.

Each transition is of the form (A → B,L/R), meaning at that state, if the head reads
A, it writes B, and moves left or right. For transitions where there is only a single character
listed (e.g. x, 0, 1 or not(0, 1)), this is just shorthand for reading x, 0, 1 or not 0 or 1 and
signifies that the character we write and direction we move don’t matter. Some trivial
transitions are missing for clarity.

As soon as we reach an accept state (qA) we accept, and as soon as we reach a reject
state (qR) we reject.

Exercise 1.2. Compare Figure 3 above to the algorithm we covered last lecture for deciding
{0n1n | n ∈ N}. Which states in the diagram correspond to which steps of the algorithm?

1.4 Practice Questions

1. Prove that there exists a Turing Machine which accepts all strings in the language
L = {ww | w ∈ {0, 1}∗} and rejects all strings not in L. Is there a DFA which
recognizes L?

2. For every regular language R, is there a Turing machine which accepts strings if they
are in R and rejects them if they are not?

2 Decidable vs. Recognizable

A language L is decidable if there exists a Turing machine M such that M accepts every
string in L and M rejects every string not in L. Here, we say M decides L.

Figure 4: Decidable vs. Recognizable.

5



A language L is recognizable if there exists a Turing machine M such that M accepts
every string in L and M rejects or loops on every string not in L. Here, we say M recognizes
L.

We see that if and only if L and ¬L (¬L is the language of all strings not in L) are both
recognizable, then L is decidable.

We have already seen 0n1n is decidable. Now, we will give examples of undecidable,
recognizable, and unrecognizable languages.

Consider the following language

L = {(M,w) |M is a Turing machine and w is a string}

One first glance, this looks quite odd. Languages consist of strings. However, this
language consists of (M,w) tuples, where M is a Turing machine. Think about it! Every
Turing machine can be encoded as a string. We can always write down the finitely many
transitions between states, and the alphabet and all the parameters, encoding it somehow.

Consider the following, somewhat similar language.

ATM = {(M,w) |M is a Turing machine and w is a string and M accepts w}

Theorem 1. ATM is recognizable.

Proof. In order to recognize the language, we construct a Turing machine, which, given an
input (M,w), simulates M on w. Such a Turing machine is called the Universal Turing
machine, and is denoted U . U takes in (M,w), simulates M on w, and if M accepts w, then
U accepts, and if M rejects w, then U rejects. Consequently, if M loops on w, then U loops
on (M,w). So, ATM is recognizable.

Theorem 2. ATM is undecidable.

Proof. Assume there is a Turing machine T which decides ATM . In other words, T accepts
(M,w) if (M,w) ∈ ATM and rejects (M,w) if (M,w) 6∈ ATM .

T ((M,w)) =

{
T accepts (M,w) if (M,w) ∈ ATM (M accepts w)

T rejects (M,w) if (M,w) 6∈ ATM (M does not accept w)

We will show this leads to a contradiction.
Now, remember, w is any string, and any Turing machine can be encoded as a string.

What happens if we run T on (Turing machine, Turing machine) tuples, where the input
strings w are Turing machines? We might get a table that looks something like this:

M1 M2 M3 . . .
M1 accept reject accept . . .
M2 reject accept accept . . .
M3 accept reject reject . . .
...

...
...

...
. . .

6



where the the cell in the ith row and jth column represents the output of T (Mi,Mj), and
M1,M2, . . . is some ordering of Turing machines. We don’t actually know what the values
are for the cells in the above table, but it turns out that won’t matter.

Now, consider the following Turing machine D:

D(M) =

{
D accepts M if T rejects (M,M)

D rejects M if T accepts (M,M)

Once, more consider the table for T on tuples where both elements are Turing machines:

M1 M2 M3 . . . D
M1 accept reject accept . . . accept
M2 reject accept accept . . . reject
M3 accept reject reject . . . accept
...

...
...

...
. . .

...
D reject accept accept . . . reject

We see that the output of D simply reverses the diagonal, because D(M1) is the opposite
of T (M1,M1), and D(M2) is the opposite of T (M2,M2), and so forth. The bold values
(flipped diagonal) in the table below are the outputs of D.

M1 M2 M3 . . . D
M1 reject reject accept . . . accept
M2 reject reject accept . . . reject
M3 accept reject accept . . . accept
...

...
...

...
. . .

...
D reject accept accept . . . ???

However, what happens at D(D)? By construction, D rejects D if T accepts (D,D), but
T accepts (D,D) when D accepts D. Also by construction, D accepts D if T rejects (D,D),
but this only happens when D does not accept D.

Therefore, we have

D(D) =

{
D accepts D if D does not accept D

D rejects D if D accepts D

But, this is a contradiction! So, D cannot exist, so T cannot exist, so there can be no
Turing machine T that decides ATM . Thus, ATM is undecidable.

2.1 Practice Questions

1. Prove ¬ATM is unrecognizable.

2. Prove the Halting problemHALT = {(M,w) |M is a Turing machine and M halts on w}
is recognizable and undecidable. What can you conclude about ¬HALT?

7



3 Reductions

Now, you could prove question 2 above by deriving a contradiction like we showed for ATM .
But, that’s a lot of work. Diagonalization quickly becomes complicated when we start
working with complex problems. Instead, let’s use what we already know about ATM to
prove HALT is undecidable.

Theorem 3. HALT is undecidable.

Proof. We will prove that if HALT is decidable, then ATM is decidable. This will lead to a
contradiction—we already know ATM is undecidable!

Suppose we have a magic function f that takes as input (M,w), and outputs (N, x),
where M and N are Turing machines, and w and x are strings.

The function is magical because it is defined as follows:

f(M,w) =

{
(N, x) where N is a TM that halts on x if M accepts w

(N, x) where N is a TM that loops on x if M does not accept w

Suppose this function exists. Furthermore, suppose this function is computable, that is,
it can be run on a Turing machine.

Now, assume HALT is decidable. Then, there exists a Turing machine A that decides
HALT . In other words, A accepts every input (N, x) such that N halts on x, and A rejects
all (N, x) where N loops on x.

Figure 5: A Turing machine B that decides ATM based on a TM A that decides HALT .

Using f and A, we construct a Turing machine B that decides ATM , as shown in Figure
5 above.

On some input (M,w), B runs the magic function f from above on (M,w). This produces
some output (N, x). B then simulates running (N, x) on A to see if (N, x) halts or not,
because A decides HALT . B then outputs the result of A.

Why does B decide ATM? Well, if our input to B (M,w) is in ATM , then M accepts w, so
f(M,w) = (N, x) ∈ HALT , so A accepts and thus B accepts. Otherwise, if (M,w) 6∈ ATM ,
M does not accept w, so f(M,w) = (N, x) 6∈ HALT , so A rejects and B rejects.

And there we have it. Assuming the magic function f exists, B decides ATM . However,
ATM is undecidable, so B cannot exist. Therefore, no Turing machine A that decides HALT
can exist. Thus, HALT is undecidable.

Now, all that’s left to do is to prove the existence of f . Consider the following function.

8



f(M,w) = (N, (M,w))

where N is a Turing machine that runs M on w and then accepts.
This is a computable function; it can be run on a Turing machine. Furthermore, if

(M,w) ∈ HALT , then M halts on w, so N will accept, and thus (N, (M,w)) ∈ ATM .
If (M,w) 6∈ HALT , thenM loops on w, soN will loop simulatingM on w, so (N, (M,w)) 6∈

ATM . Thus, f satisfies all the properties of our “magic function” from earlier.

f(M,w) =

{
(N, (M,w)) where N is a TM that halts on (M,w) if M accepts w

(N, (M,w)) where N is a TM that loops on (M,w) if M does not accept w

Thus, HALT is undecidable.

This method of solving problems—showing that if language L is decidable, then ATM is
decidable, is called a reduction. We reduced ATM to the language HALT .

Could we do this with any two languages A and B? Given two languages A and B, when
can I use B’s decidability to prove A’s decidability?

It turns out that a language A is mapping reducible to B precisely when a “magic”
function exists between the A and B. Let’s define this formally.

Definition 3.1. A is mapping reducible to B (A ≤m B) if there exists a computable function
f such that for all x ∈ A, f(x) ∈ B, and for all x ∈ ¬A, f(x) ∈ ¬B.

In other words, there exists a function that “maps” elements of A to elements of B.
Computable essentially means that f can be calculated on a Turing machine.

Figure 6: A mapping from A to B. Note f is not necessarily a bijection. There could be
points in B or ¬B that no x maps to. For example, suppose f : R+ → R+, A = (0, 1),
and B = (2, 4). Then, let f(x) = 1

x
if x ≥ 1 and f(x) = x + 2 otherwise. This is a valid

computable mapping from A→ B but is no x ∈ R+ such that f(x) ∈ [3,∞).

9



We can use this definition of a reduction to prove a few very useful theorems relating two
languages. These should look very similar to how we proved the undecidability of HALT
given ATM ’s undecidability.

Theorem 4. If A ≤m B and B is decidable, then A is decidable.

Proof. If A ≤m B, then there is a computable function f such that for all x ∈ A, f(x) ∈ B,
and for all x ∈ ¬A, f(x) ∈ ¬B.

Suppose B is decidable by some Turing machine M . We construct the following Turing
machine M ′ (represented in the figure above) to decide A. We simply run any input x
through the function f , check if f(x) ∈ B using its decider M , and output the result for M ′.

If x ∈ A, then f(x) ∈ B, so M accepts f(x), and M ′ accepts x.
If x 6∈ A, then f(x) 6∈ B, so M rejects f(x), and thus M ′ rejects x.
Thus, M ′ decides A.

Corollary 1. If A ≤m B and A is undecidable, then B is undecidable.

Proof. This is just the contrapositive of Theorem 4.

Theorem 5. If A ≤m B and B is recognizable, then A is recognizable.

Proof. If A ≤m B, then there is a computable function f such that for all x ∈ A, f(x) ∈ B,
and for all x ∈ ¬A, f(x) ∈ ¬B.

Suppose B is recognizable by some Turing machine M . We construct a the following
Turing machine M ′ (represented by the diagram above) to recognize A. We simply run the
input x through the function f , and output the result of M(f(x)) as our result of M ′(x).

If x ∈ A, then f(x) ∈ B, so M accepts f(x), and thus M ′ accepts x.
If x 6∈ A, then f(x) 6∈ B, so M either rejects or loops on f(x). So, M ′ rejects or loops on

x.
Thus, M ′ recognizes A.

10



Corollary 2. If A ≤m B and A is unrecognizable, then B is unrecognizable.

Proof. This is just the contrapositive of Theorem 5.

It’s important to remember that not every function is computable! For example, consider
the function f(M,w) = (N, x), where N is a Turing machine that accepts x if M loops on
w. How can we compute this? We can never know if M loops on w, because at any time M
might halt on w in one more step, or two more steps. I would have to run M on w infinitely,
so this isn’t computable.

3.1 Examples

Let’s go through a few examples. For each example, I’ll present a language, and we’ll
construct a computable function to show that the language is reducible to a language we’ve
already proven results about. The hard part is almost always coming up with a proper
function that satisfies everything we want.

Example 3.1. Consider the language EMPTYTM = {M | M is a TM and M accepts ∅}.
EMPTYTM is unrecognizable.

We can prove this by reducing ¬ATM = {(M,w) | M is a TM that does not accept w}
to EMPTYTM .

Consider the function f(M,w) = N where N is a TM that rejects all strings x if x 6= w
and N(w) = M(w).

This function is computable, we can easily create a Turing machine that takes in (M,w)
and outputs N .

If M accepts w, then N accepts only w. So, L(N) 6= ∅, and thus N 6∈ EMPTYTM . If
M does not accept w, then N accepts nothing. So, L(N) = ∅, and N ∈ EMPTYTM . Thus,
(M,w) ∈ ¬ATM ⇐⇒ N ∈ EMPTYTM .

Since ¬ATM ≤m EMPTYTM , and ¬ATM is unrecognizable, EMPTYTM is unrecogniz-
able.

Example 3.2. Consider the languageREGULARTM = {M |M is a TM and L(M) is regular}.
We will prove that REGULARTM is unrecognizable.
Consider the following computable function:

f(M,w) = N

where N is Turing machine that rejects every input except 0n1n. N(x) = M(w) for all
x ∈ {0n1n | n ∈ N}.

We see that if M does not accept w, then N accepts nothing. Since the empty lan-
guage is regular, N ∈ REGULARTM . If M accepts w, then L(N) = {0n1n | n ∈ N}, so
N 6∈ REGULARTM . Thus, (M,w) ∈ ¬ATM ⇐⇒ N ∈ REGULARTM . Since ¬ATM is
unrecognizable, REGULARTM is unrecognizable.

Example 3.3. Assuming only HALT is undecidable, we can prove ATM is undecidable. We
can construct the following function:

f(M,w) = (N, x)

11



where N is a Turing machine that runs M on w and then accepts. This is a computable
function. Furthermore, if (M,w) ∈ HALT , then M halts on w, so N will accept x, so
(N, x) ∈ ATM . If (M,w) 6∈ HALT , then M loops on w, so N will loop on x simulating M
on w, so (N, x) 6∈ ATM . Thus, HALT ≤m ATM .

Since HALT and ATM can both be reduced to each other, HALT ≡m ATM ! The
problems are equivalent!

3.2 Practice Questions

Questions 1–4 have been borrowed from the Autumn 2019 offering of CS 154 at Stanford.
You can view the lectures online at the course site for more problems.

1. Prove

OneHalts := {(M,x, y) | the TM M halts on precisely one of the two inputs x, y}

is unrecognizable.

2. Is the following language decidable?

Symbol = {(M,w, σ) | M encodes a TM that writes the symbol σ
∈ Γ in some step, while running on the input w}

3. Prove ¬OneHalts is also unrecognizable.

4. Let S = {M | M is a Turing machine, and the language recognized by M is {M}}.
Prove that S and ¬S are unrecognizable. Recall that Turing machines can access their
own descriptions.

5. Why is the following answer to the first part of question 4 incorrect?

We shall show ¬ATM ≤m S. Consider some (M,w) ∈ ¬ATM . We construct
a function f(M,w) = M ′, where M ′ is a Turing machine that rejects every
input x except x = M ′. If x = M ′, M ′ accepts x if M does not accept w,
and M ′ rejects x if M accepts w.

Thus, if (M,w) ∈ ¬ATM , we see that M does not accept w so the language
of M ′ is M ′ and so M ′ ∈ S. Going the other way, if the representation of
M ′ ∈ S, then M must not accept w so (M,w) ∈ ¬ATM . Therefore, S is not
recognizable as ¬ATM is not recognizable. Note that M ′ can check if x = M ′

as it has access to its own description.

— Courtesy of a friend from CS 154.

12

https://omereingold.wordpress.com/cs-154-introduction-to-automata-and-complexity-theory/


4 Resources

• Some definitions and explanations from CS 103, Stanford’s introductory theory course.
http://web.stanford.edu/class/archive/cs/cs103/cs103.1202/

• We’ve borrowed multiple practice questions and examples (Section 3) from Stanford’s
CS 154 class. It’s a great resource for learning more about Turing machines and theory.
https://cs154.stanford.edu

• Automata drawing software:
http://madebyevan.com/fsm

• Turing Machine diagram:
http://www.texample.net/tikz/examples/turing-machine-2/

13


	Recap
	Finite Automata
	Regular vs. Non-regular
	Turing Machines
	Practice Questions

	Decidable vs. Recognizable
	Practice Questions

	Reductions
	Examples
	Practice Questions

	Resources

