
Proving NP-Completeness

Nikhil Sardana

February 2020

1 SAT

A conjunctive normal form (cnf) boolean formula is a conjunction of clauses. Each clause
consists of literals (boolean variables or their negations) and OR operators.

From now on, we will refer to a cnf boolean formula as simply a boolean formula.
For example, consider the following boolean formula:

φ1 = (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ ¬x1 ∨ ¬x2)
x1, x2, x3, and x4 are variables. Each variable can be set to either True or False. A

literal is a variable or complement of a variable, so the literals in the above formula are
x1, x2, x3, x4,¬x1, and ¬x2. ¬x1 is the negation of x1; when x1 is set to True, ¬x1 is False.
∨ is the OR operator, so the first clause (expression within the first parentheses) reads “x1
or x2 or x3.” ∧ is the AND operator. In a boolean formula, clauses are joined by ANDs.

The formula below reads “(x1 or not x1 or x2) and (x4 or not x3) and x2.”

φ2 = (x1 ∨ ¬x1 ∨ x3) ∧ (x4 ∨ ¬x3) ∧ (x2)

A boolean formula is satisfiable if there exists a variable setting that makes the entire
statement true. A variable setting that satisfies a boolean formula is called a satisfying
assignment for the formula. Because each clause is joined by an AND, and within each
clause every literal is joined by ORs, a satisfying assignment must ensure every single clause
has at least one true literal.

Example 1.1. A satisfying assignment for the above formula φ2 is

Variable Assignment
x1 True
x2 True
x3 False
x4 False

Under this assignment, φ2 becomes

φ2 = (1 ∨ 0 ∨ 0) ∧ (0 ∨ 1) ∧ (1) = 1 ∧ 1 ∧ 1 = 1

where 1 denotes a True assignment and 0 a False assignment.

1

A formula can have multiple satisfying assignments. It needs only 1 to be considered
satisfiable.

Exercise 1.1. Does the following boolean formula have a satisfying assignment? If, so,
provide one.

φ = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2) ∧ (x3 ∨ x1)

Exercise 1.2. Does the following boolean formula have a satisfying assignment? If, so,
provide one.

φ = (x1 ∨ ¬x1 ∨ ¬x3) ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3)

It’s tough, isn’t it! There are a maximum of 2n variable settings, where n is the number
of variables.

Don’t worry, it’s tough for computers too. We don’t have a polynomial time algorithm
for solving satisfiability. (Time complexity is always in terms of the input length, which in
this case is the length of the formula |φ|, or the number of literals.)

However, we do know that the problem of satisfiability is in NP . If I tell you that a
formula is satisfiable, and give you a certificate, i.e. a valid satisfying assignment, you can
easily verify in polynomial time that I am correct. For example, a satisfying assignment for
our first example φ1 = (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ ¬x1 ∨ ¬x2) above is:

Variable Assignment
x1 True
x2 True
x3 True
x4 True

Since the number of variables is at most the number of literals |φ|, you can easily verify
that each clause has at least one True literal given the above setting. Even if you’re being
inefficient, and loop over x1, x2, x3 and x4 for each term in φ1, you still only take O(n2) time
to verify that I have indeed provided you with a correct satisfying assignment, and thus φ1

is in SAT, the language of satisfiable boolean formulas.

SAT = {φ | φ is a satisfiable Boolean formula}
Now, let’s prove that SAT is NP -complete.

2 NP-completeness of SAT

Theorem 1 (Cook-Levin). SAT is NP -complete.

Proof. To prove SAT is NP -complete, we must prove

1. SAT ∈ NP .

2. For all languages A ∈ NP , A ≤p SAT .

2

We have already proven (1). Now, for part (2).
For some problem A, if A ≤p SAT , there is a polynomial-time computable function

f(w) = φ such that w ∈ A ⇐⇒ φ ∈ SAT .
Coming up with this function is going to be tricky. We don’t know much about A. All

we know about a generic language A ∈ NP is the following:

1. A can be verified in polynomial time by a deterministic Turing machine.

2. A can be decided in polynomial time by a nondeterministic Turing machine.

We’re going to use the second definition of A to construct our reduction.
For a given A ∈ NP , let N be a nondeterministic Turing machine that decides A in

O(nk) time.
We can write down a single computation state of N using an array. For example, our

starting computation state. We begin with only the input (w1w2 . . . wn) on the tape, and
our head starts at state q0, reading the first character.

q0 w1 w2 . . . wn

Depending on the transition function, N might move left or right and write different
characters. Say N reads w1, writes w2, moves right, and transitions to q4. After this step,
our machine can be written as.

w2 q4 w2 . . . wn

Because N is nondeterministic, it has many branches of computation, so there can be
exponentially many different “computation arrays”, each representing a different state of N .
However, each of these branches has at most lengthO(nk), so every one of these “computation
arrays” can have at most O(nk) cells. This is because we can add at most one character to
the tape at every step.

Instead of writing down all the computational branches of N for a given input w, let’s
only write down a single computation path. We can write down a single computation path
of N in an nk × nk tableau.

q0 w1 w2 . . . wn � . . .
#
#

#

Each row represents a different computation state of N . The first row is the initial state,
with only q0 and the input w on the tape. The second row shows N one step later, and
the third one step after that. Since there are at most O(nk) steps in any computation path,
every tableau has at most O(nk) rows. As we said earlier, each “computation array,” or row,

3

has length at most O(nk), so every tableau is of size O(nk) × O(nk). For simplicity, we’ll
just say the tableau has size nk × nk.

Every cell of the tableau contains a single element of Q∪ Γ∪ {#}. Q is the set of states
{q0, q1, . . . }. Γ is tape alphabet (which contains the alphabet of A). The special # character
marks the beginning and end of each row. We will call the symbol at the cell in the ith row
and jth column cell[i, j].

We call a tableau accepting if it corresponds to an accepting computation path. A tableau
is accepting if and only if it contains an accept state qA somewhere in the final row.

2.1 The Reduction

So, how does this tableau help us with our polynomial-time reduction from A to SAT?
If w ∈ A, then there exists an accepting tableau for N on w. If w 6∈ A, there does

not exist an accepting tableau. Our reduction will proceed as follows. We will construct
a computable polynomial-time function f(w) = φ that uses the tableau’s information and
structure.

φ will be a formula that encodes the tableau. The variable settings of φ will correspond the
possible tableaus for N on w. We want satisfying assignments of φ to correspond to accepting
tableaus of N on w, and unsatisfying assignments to correspond to rejecting tableaus. That
way, there exists a satisfing assignment of φ iff w ∈ A.

φ needs to encode the contents of the tableau (i.e. the symbols in each cell) as boolean
variables. Recall that every cell contains a single element of Q ∪ Γ ∪ {#}. So, we create a
boolean variable xi,j,s for every single s ∈ Q∪Γ∪{#}. This gives us nk×nk×|Q∪Γ∪{#}|
total variables.

We will encode the information cell[i, j] = s as setting the variable xi,j,s = 1. We can
do this for every single (i, j) cell in the tableau, so collectively, these variables can store the
information in the entire tableau.

φ also needs to encode the constraints of a tableau. Not every setting of these variables
with xnk,j,qA = 1 corresponds to an accepting tableau—some variable settings will not cor-
respond to a valid tableau at all! (xnk,j,qA is a variable corresponding to a cell on the last
row.)

For example, if xi,j,qA = 1 and xi,j,t = 1 for qA, t ∈ Q ∪ Γ ∪ {#}, qA 6= t, then this
corresponds to cell[i, j] = qA and cell[i, j] = t. However, since cell[i, j] can only contain a
single character, this variable setting does not correspond to an accepting tableau.

So, what are the constraints that make any old nk × nk matrix a valid accepting tableau
for N on w?

• Each cell contains only elements in the set Q ∪ Γ ∪ {#}.

• Each cell contains exactly one element.

• The first row corresponds to a valid starting initial state forN on w (i.e. q0w1w2w3 . . . wn).

• If the tableau is accepting, the final row contains a cell with the accepting state qA.

• The contents of row i correspond a state reachable in one Turing machine step from
the contents of row i− 1.

4

Our first constraint is handled by the fact that we are only working with variables xi,j,s
that correspond to elements in Q ∪ Γ ∪ {#}. For simiplicity, let us call Q ∪ Γ ∪ {#} = C.

Our formula must be satisfied only when the other four constraints are all satisfied.

φ = φ1 ∧ φstart ∧ φaccept ∧ φtransition

φ1 is a formula satisfied when each cell contains exactly one element. Writing this con-
straint down in a formula results in this complicated-looking expression:

φ1 =
∧

1≤i,j≤nk

[(∨
s∈C

xi,j,s

)
∧

(∧
s,t,∈C,s6=t

(¬xi,j,s ∨ ¬xi,j,t)

)]

But, this is a fairly simple formula once we break it down:

φ1 =
∧

1≤i,j≤nk

(∨

s∈C

xi,j,s

)
︸ ︷︷ ︸

At least one variable true

∧

(∧
s,t,∈C,s6=t

(¬xi,j,s ∨ ¬xi,j,t)

)
︸ ︷︷ ︸

No two variables true

︸ ︷︷ ︸

Conditions must hold for every cell

φstart is even simpler. We know our first row has to look like:

q0 w1 w2 . . . wn � . . .

So, we can just write this explicitly in a formula.

φstart = x1,1,# ∧ x1,2,q0 ∧ x1,3,w1 ∧ . . . ∧ x1,n+1,wn ∧ x1,n+2,� ∧ . . . ∧ x1,nk,#

φaccept is the simplest of the four. Our only constraint is that qA appears somewhere in
the final row.

φaccept =
∨

1≤j≤nk

xnk,j,qA

φtransition is the hard one. Given a row that corresponds to a valid state of N on w, how
do we know the next row represents a valid state of N on w that is reachable from the prior
row’s state in a single step? This has to be true for our variables to encode a proper tableau,
because each row represents a successive step in a computation branch.

Here, we’re going to use the specific properties of our nondeterministic Turing machine N .
We know N has some transition function. We can use the transition function to determine
exactly what makes one row valid, given the previous row.

For example, suppose Q = {q0, q1}, and we have the following transition function:

(State,Read)→ (Next State,Write,Direction)

(q0, 0)→ (q1, 0, L)

(q0, 1)→ (q1, 0, R)

5

(q1, 0)→ (q0, 1, L)

(q1, 1)→ (q0, 0, L)

Then, if we see the following cells in a row of a tableau

. . . 0 q1 1 . . .

We know that directly below these three cells, in a valid tableau, we should see

. . . q0 0 0 . . .

because we read the 1, write a 0, and move left. On the other hand, in a valid tableau
for N on w, we cannot not see

. . . 0 q1 1 . . .

. . . 0 0 q1 . . .

because the transition function does not allow it.
Whatever the transition function for N , every step results in changes at a local level. In

fact, it’s sufficient for us to loop over every 2×3 set of cells between two rows to determine if
the second row is reachable from the first. Most of these 2×3 tiles won’t be very interesting,
since they aren’t near the head, but if we check all the ones near the head, it will tell us if
the second row is valid given the first. We’re not going to show this rigorously, but you can
do the math to prove 2 × 3 is sufficiently large to prove or disprove correctness. It comes
intuitively from the fact that the head can move left or right one cell, and writes to it’s right.

Since the transition function of N is finite, the number of possible 2 × 3 cells is finite.
We can make a list and write down all of them, and assign them “valid” or “invalid.” Then,
we can check over every 2× 3 group of cells in the tableau, and check if they are valid. We
show this in the following formula:

φtransition =
∧

1≤i≤nk−1
1≤j≤nk−2

∨
a1,...,a6 is valid

(xi,j,a1 ∧xi,j+1,a2 ∧xi,j+2,a3 ∧xi+1,j,a4 ∧xi+1,j+1,a5 ∧xi+1,j+2,a5)

This formula breaks into two parts. The first part ensures that the inner clause is true
for all 2× 3 sets of cell. The inner clause ensures that all six cells in a particular 2× 3 group
correspond to some valid group a1, . . . , a6 in the set of all valid 2× 3 groups.

φtransition =
∧

1≤i≤nk−1
1≤j≤nk−2︸ ︷︷ ︸

For all 2x3 cells

∨
a1,...,a6 is valid

(xi,j,a1 ∧ xi,j+1,a2 ∧ xi,j+2,a3 ∧ xi+1,j,a4 ∧ xi+1,j+1,a5 ∧ xi+1,j+2,a5)︸ ︷︷ ︸
Cell at (i, j) is valid

And thus, our final formula

φ = φ1 ∧ φstart ∧ φaccept ∧ φtransition

encodes all four constraints, and so, f(w) = φ, where φ is the formula above. φ is satisfied
iff there exists an accepting tableau for N on w, so φ ∈ SAT ⇐⇒ w ∈ A. Thus, A ≤ SAT .

6

2.2 Polynomial Time

To prove A ≤p SAT , we need to show our formula φ is polynomial in length. φstart is of
size O(nk), since it encodes a single row. φaccept is also length O(nk), since it looks only
at the final row. φ1 looks at every single cell on the table, and does constant computation
(the size of C) in each cell. So, φ1 ∈ O((nk)2) = O(n2k). Finally, φtransition looks at a
constant sized 2 × 3 grid over the entire tableau, so φtransition is also in O(n2k). Thus,
|φ|= O(nk) + O(n2k) + O(nk) + O(n2k) = O(n2k). Since our input is of length |w|= n,
φ ∈ O(n2k) ∈ P . Thus, f is a polynomial-time reduction from A to SAT . So, A ≤p SAT .

3 Reductions to NP-complete Problems

Now, let’s prove some other problems are NP -complete. Luckily, we’ll never have to do
another Cook-Levin style proof again. Now that we’ve proved that SAT is NP -complete,
we can prove another problem B is NP -complete by simply finding a polynomial time
reduction to B from SAT . This is because if any A ∈ NP has a polynomial time reduction
A ≤p SAT , and SAT ≤p B, then A ≤p B.

To see why, suppose that f, g,∈ P and x ∈ A ⇐⇒ f(x) ∈ SAT , and f(x) ∈ SAT ⇐⇒
g(f(x)) ∈ B. Then, clearly, x ∈ A ⇐⇒ g(f(x)) ∈ B. Since f and g are both in P , f ◦g ∈ P
as well. So, A ≤p B for all A ∈ NP if SAT ≤p B.

Let’s practice constructing reductions from NP complete problems.

Example 3.1. Claim: 3SAT = {φ | φ is a satisfiable 3cnf formula} is NP -complete.
A 3cnf formula is boolean formula where every clause has three literals. For example,

the formula below is in 3SAT , because it is satisfied by x1 = True, x2 = True, x3 = True.

φ = (x1 ∨ ¬x1 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3)

7

We’ll prove 3SAT is NP -complete by constructing a polynomial time reduction to show
SAT ≤p 3SAT .

First, we need to show 3SAT ∈ NP . This is very similar to the proof of SAT ∈ NP .
Given any certificate, or satisfying assignment of a 3cnf-formula, we can in constant time
check each clause is satisfiable, and thus in O(n) time check if the formula is in 3SAT .

Now, to prove the reduction. Consider any satisfiable formula with clauses C1, . . . , Cn.

φ = C1 ∧ C2 ∧ C3 ∧ . . . ∧ Cn

If some C1 = (x1 ∨ x2 ∨ . . . ∨ xm) has more than three literals, we can add a few variables
and split this clause into many clauses of length 3, such that the below formula is satsifiable
iff the above clause is satsifiable.

C̃1 = (x1 ∨ x2 ∨ z1) ∧ (¬z1 ∨ x3 ∨ z2) ∧ . . . ∧ (zm−3 ∨ xm−1 ∨ xm)

We see that whether z1, . . . , zm−3 are true or false, our new C̃1 won’t be satisfiable unless
one of x1, . . . xm is true, in which case C1 is satisfiable.

Since we require fewer than m literals to split a clause of size m into equivalent clauses
of size 3, this reduction takes polynomial time. Thus,

φ = C1 ∧ C2 ∧ C3 ∧ . . . ∧ Cn ∈ SAT

if and only if
φ̃ = C̃1 ∧ C̃2 ∧ C̃3 ∧ . . . ∧ C̃n ∈ 3SAT.

As f(φ) = φ̃ ∈ P , SAT ≤p 3SAT . Thus, 3SAT is NP -complete.

Let’s try a less obvious example.

Example 3.2. CLIQUE is NP complete.
Recall that a (graph, integer) tuple (G, k) is in CLIQUE if and only if G contains a

clique (complete subgraph) of k vertices.
We need to show that

• CLIQUE ∈ NP .

• CLIQUE is NP-hard.

We have already shown the first point in earlier lectures. To show the second, we will
show the reduction 3SAT ≤p CLIQUE. Then, A ≤p SAT ≤p 3SAT ≤p CLIQUE for all
A ∈ NP , so we will know CLIQUE is NP -hard.

In other words, we will construct a polynomial time function f such that given a 3cnf
formula φ with |φ|= n, f(φ) = (G, k), where G is a graph and k is a number. This function
f will be such that if φ ∈ 3SAT , (G, k) ∈ CLIQUE (i.e., G has a clique of size k), and if
φ 6∈ 3SAT , (G, k) 6∈ CLIQUE.

φ ∈ 3SAT =⇒ f(φ) = (G, k) ∈ CLIQUE

φ 6∈ 3SAT =⇒ f(φ) = (G, k) 6∈ CLIQUE

8

Figure 1: What is the largest clique in this graph?

We can also show this with an “if and only if” statement, which is stronger:

φ 6∈ 3SAT ⇐⇒ f(φ) = (G, k) 6∈ CLIQUE

Our function f from φ to (G, k) is as follows:
Say φ = C1 ∧ C2 ∧ . . . ∧ Cm is a boolean 3cnf formula with m clauses. f(φ) = (G, k),

where G is a graph with m groups of 3 vertices, where each literal xi ∈ φ corresponds to a
vertex. G contains an edge between all pairs of vertices in different groups, except between
pairs (xi,¬xi), for all variables in φ. Draw no edges between vertices in the same group.
Finally, k = m.

Figure 2: Given the boolean 3cnf formula φ = (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x4 ∨ ¬x3) ∧ (x2 ∨
¬x1 ∨ x4)∧ (x3 ∨ x4 ∨¬x2), the above figure shows the corresponding graph f(φ) = G, with
only the edges from the first clause shown for clarity. In the true graph G, edges exist from
all four clauses.

We claim if φ ∈ 3SAT , then G has a clique of size k = m. If φ in 3SAT , there exists a

9

Figure 3: Minimum vertex covers in two graphs.

satisfying assignment, some variable assignment such that at least one literal in every clause
Ci is true. Let vi be a vertex in group i that corresponds to the true literal in Ci for the
satisfying assignment. Then, we claim that the set of vi’s form a clique.

We see that if (vi, vj) is not an edge for i 6= j, then vi and vj must be opposite literals
since they are in different groups (one must be xk while the other is ¬xk). But then, both vi
and vj cannot correspond to true literals in the satisfying assignment. So, they both cannot
be in our set. Hence, every pair of vertices in our set of vi’s must have an edge between
them. So, our set of vi’s form a clique of size m. So, φ ∈ 3SAT =⇒ (G,m) ∈ CLIQUE.

Now, we will prove the other direction off the “if and only if.” We will show (G,m) ∈
CLIQUE =⇒ φ ∈ CLIQUE.

Suppose we are given a graph created by the function f above from a φ. We don’t yet
know if φ ∈ 3SAT , that is, if φ is satisfiable. We claim that if G has an m-clique, then
there exists a satisfying assignment of φ. If there exists an m-clique in G, then there is
a set of m vertices which have edges between every pair. These vertices must all be from
different groups, because there are no edges within groups. Hence, there exists a set of m
literals, each from a different one of the m groups, and all pairs of literals can be true at
the same time. The only way a pair of literals cannot be true at the same time is if the pair
is (xj,¬xj), but there are no edges between these pairs in G. But if m literals, each from
different clauses can be true all at the same time, then this is a satisfying assignment of φ.
Hence, if (G,m) ∈ CLIQUE =⇒ φ ∈ 3SAT .

Hence,
φ 6∈ 3SAT ⇐⇒ f(φ) = (G, k) 6∈ CLIQUE

Our function f which converts a formula φ to a (graph, integer) tuple (G, k), although
not a typical f(x) = y function, is indeed a computable function. In fact, it’s also fairly
quick—if there are n literals in φ, then there are n vertices in G, and a graph with n vertices
has at most

(
n
2

)
≈ n2 edges. Hence, f ∈ O(n2), which is in polynomial time.

In general, the two steps of proving a problem is NP -complete is figuring out

1. Which well-known NP -complete problem to use in your reduction.

2. How to construct the reduction function.

Example 3.3. Vertex Cover (V C) is NP complete.
Recall that (G, k) ∈ V C if there exists a set of at most k vertices in G that are adjacent

to every edge.
We need to show that

10

Figure 4: More vertex covers.

• V C ∈ NP .

• V C is NP-hard.

We have already shown the first point in earlier lectures. To show the second, we will
show the reduction CLIQUE ≤p V C. Then, A ≤p SAT ≤p 3SAT ≤p CLIQUE ≤p V C for
all A ∈ NP , so we will know V C is NP -hard.

In other words, we will construct a polynomial time function f such that given a graph
G with a clique of size m, f((G,m)) = (G′, k), where G′ is a graph with a vertex cover of
size k. If G does not contain an m-clique, then G′ does not contain a vertex cover of size k.

Our function is as follows:
f(G,m) = (G′, |V |−m), where G′ is a graph with the edge complement of G.
Hence, in G′, there are no edges between the m clique vertices of G. Clearly, all edges in

G′ must then touch one of the |V |−m vertices not part of the original clique in G. Hence,
G′ has a vertex cover of size |V |−m. Thus, (G,m) ∈ CLIQUE =⇒ (G′, |V |−m) ∈ V C.

Now we will show the other direction. Suppose under this construction that G′ has a
vertex cover of size at most |V |−m. This means there is a set of at least m vertices that do
not have edges between them. Hence, in the complement of G′, or G, there is a clique of m
vertices. Thus, (G′, |V |−m) ∈ V C =⇒ (G,m) ∈ CLIQUE.

Finally, our formula f runs in polynomial time. So, CLIQUE ≤p V C, and thus V C is
NP -complete.

Exercise 3.1. Prove IS (independent set) is NP -complete. A (graph, integer) tuple (G, k)
is in the language IS if G contains a set of at least k vertices with no edges between any
pair.

4 Practice Questions

1. Show Subset-Sum is NP -complete. The Subset-Sum problem is as follows:

Given a set S = {a1, . . . , an} of positive integers and a positive integer t, is there an
A = {a1, a2, . . . , am} ⊆ {1, . . . , n} such that

t =
∑
i∈A

ai

Hint: Show V C ≤p Subset-Sum.

11

2. Show HAMPATH = {(G, s, t) | G is a directed graph with a Hamiltonian path froms to t}
is NP -complete. Hint: Show 3SAT ≤p HAMPATH.

3. Show Longest-Path = {(G, s, t, k) | G has a simple path of length > k from s to t} is
NP -complete. Hint: Reduce HAMPATH to Longest-Path.

5 Resources

Next week, we’ll begin a completely new topic. I haven’t quite decided what we will cover,
but it will be much closer to practical algorithms. I hope you enjoyed our survey and dive
into computer science theory. If you want to learn more, you can check out these resources.

• Stanford’s CS 154 class is a great resource for learning more about Turing machines
and theory.
https://cs154.stanford.edu

• “Introduction to the Theory of Computation” by Michael Sipser is a great textbook if
you’re looking to learn more. You can find the problems online.
http://www-math.mit.edu/~sipser/book.html

12

	SAT
	NP-completeness of SAT
	The Reduction
	Polynomial Time

	Reductions to NP-complete Problems
	Practice Questions
	Resources

